| | |
| | | |
| | | void test_convolve() |
| | | { |
| | | image dog = load_image("dog.jpg"); |
| | | image dog = load_image("dog.jpg",300,400); |
| | | printf("dog channels %d\n", dog.c); |
| | | image kernel = make_random_image(3,3,dog.c); |
| | | image edge = make_image(dog.h, dog.w, 1); |
| | |
| | | |
| | | void test_convolve_matrix() |
| | | { |
| | | image dog = load_image("dog.jpg"); |
| | | image dog = load_image("dog.jpg",300,400); |
| | | printf("dog channels %d\n", dog.c); |
| | | |
| | | int size = 11; |
| | |
| | | |
| | | void test_color() |
| | | { |
| | | image dog = load_image("test_color.png"); |
| | | image dog = load_image("test_color.png", 300, 400); |
| | | show_image_layers(dog, "Test Color"); |
| | | } |
| | | |
| | |
| | | |
| | | void test_load() |
| | | { |
| | | image dog = load_image("dog.jpg"); |
| | | image dog = load_image("dog.jpg", 300, 400); |
| | | show_image(dog, "Test Load"); |
| | | show_image_layers(dog, "Test Load"); |
| | | } |
| | | void test_upsample() |
| | | { |
| | | image dog = load_image("dog.jpg"); |
| | | image dog = load_image("dog.jpg", 300, 400); |
| | | int n = 3; |
| | | image up = make_image(n*dog.h, n*dog.w, dog.c); |
| | | upsample_image(dog, n, up); |
| | |
| | | void test_rotate() |
| | | { |
| | | int i; |
| | | image dog = load_image("dog.jpg"); |
| | | image dog = load_image("dog.jpg",300,400); |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < 1001; ++i){ |
| | | rotate_image(dog); |
| | |
| | | void test_data() |
| | | { |
| | | char *labels[] = {"cat","dog"}; |
| | | data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2); |
| | | data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2, 300, 400); |
| | | free_data(train); |
| | | } |
| | | |
| | | void test_full() |
| | | { |
| | | network net = parse_network_cfg("full.cfg"); |
| | | srand(0); |
| | | int i = 0; |
| | | srand(2222222); |
| | | int i = 800; |
| | | char *labels[] = {"cat","dog"}; |
| | | float lr = .00001; |
| | | float momentum = .9; |
| | | float decay = 0.01; |
| | | while(i++ < 1000 || 1){ |
| | | data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2); |
| | | train_network(net, train, lr, momentum, decay); |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2, 256, 256); |
| | | image im = float_to_image(256, 256, 3,train.X.vals[0]); |
| | | show_image(im, "input"); |
| | | cvWaitKey(100); |
| | | //scale_data_rows(train, 1./255.); |
| | | normalize_data_rows(train); |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, 100, lr, momentum, decay); |
| | | end = clock(); |
| | | printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay); |
| | | free_data(train); |
| | | printf("Round %d\n", i); |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "backup_%d.cfg", i); |
| | | //save_network(net, buff); |
| | | } |
| | | //lr *= .99; |
| | | } |
| | | } |
| | | |
| | |
| | | int count = 0; |
| | | float lr = .0005; |
| | | float momentum = .9; |
| | | float decay = 0.01; |
| | | float decay = 0.001; |
| | | clock_t start = clock(), end; |
| | | while(++count <= 100){ |
| | | //visualize_network(net); |
| | |
| | | end = clock(); |
| | | printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | start=end; |
| | | cvWaitKey(100); |
| | | //cvWaitKey(100); |
| | | //lr /= 2; |
| | | if(count%5 == 0){ |
| | | float train_acc = network_accuracy(net, train); |
| | |
| | | float test_acc = network_accuracy(net, test); |
| | | fprintf(stderr, "TEST: %f\n\n", test_acc); |
| | | printf("%d, %f, %f\n", count, train_acc, test_acc); |
| | | lr *= .5; |
| | | //lr *= .5; |
| | | } |
| | | } |
| | | } |
| | |
| | | int i; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(test.data, c, h, w, size, stride, matrix); |
| | | image render = float_to_image(mh, mw, mc, matrix); |
| | | //image render = float_to_image(mh, mw, mc, matrix); |
| | | } |
| | | } |
| | | |
| | | void train_VOC() |
| | | { |
| | | network net = parse_network_cfg("cfg/voc_backup_ramp_80.cfg"); |
| | | srand(2222222); |
| | | int i = 0; |
| | | char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"}; |
| | | float lr = .00001; |
| | | float momentum = .9; |
| | | float decay = 0.01; |
| | | while(i++ < 1000 || 1){ |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | data train = load_data_image_pathfile_random("images/VOC2012/train_paths.txt", 1000, labels, 20, 300, 400); |
| | | image im = float_to_image(300, 400, 3,train.X.vals[0]); |
| | | show_image(im, "input"); |
| | | cvWaitKey(100); |
| | | normalize_data_rows(train); |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, 1000, lr, momentum, decay); |
| | | end = clock(); |
| | | printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay); |
| | | free_data(train); |
| | | if(i%10==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "cfg/voc_backup_ramp_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | //lr *= .99; |
| | | } |
| | | } |
| | | |
| | |
| | | // test_im2row(); |
| | | //test_split(); |
| | | //test_ensemble(); |
| | | test_nist(); |
| | | //test_nist(); |
| | | //test_full(); |
| | | train_VOC(); |
| | | //test_random_preprocess(); |
| | | //test_random_classify(); |
| | | //test_parser(); |