| | |
| | | #include "connected_layer.h" |
| | | //#include "old_conv.h" |
| | | #include "convolutional_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "network.h" |
| | | #include "image.h" |
| | | #include "parser.h" |
| | | #include "data.h" |
| | | #include "matrix.h" |
| | | #include "utils.h" |
| | | #include "mini_blas.h" |
| | | |
| | | #include <time.h> |
| | | #include <stdlib.h> |
| | | #include <stdio.h> |
| | | |
| | | #define _GNU_SOURCE |
| | | #include <fenv.h> |
| | | |
| | | void test_convolve() |
| | | { |
| | | image dog = load_image("dog.jpg"); |
| | | //show_image_layers(dog, "Dog"); |
| | | image dog = load_image("dog.jpg",300,400); |
| | | printf("dog channels %d\n", dog.c); |
| | | image kernel = make_random_image(3,3,dog.c); |
| | | image edge = make_image(dog.h, dog.w, 1); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < 1000; ++i){ |
| | | convolve(dog, kernel, 1, 0, edge); |
| | | convolve(dog, kernel, 1, 0, edge, 1); |
| | | } |
| | | end = clock(); |
| | | printf("Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | show_image_layers(edge, "Test Convolve"); |
| | | } |
| | | |
| | | void test_convolve_matrix() |
| | | { |
| | | image dog = load_image("dog.jpg",300,400); |
| | | printf("dog channels %d\n", dog.c); |
| | | |
| | | int size = 11; |
| | | int stride = 4; |
| | | int n = 40; |
| | | float *filters = make_random_image(size, size, dog.c*n).data; |
| | | |
| | | int mw = ((dog.h-size)/stride+1)*((dog.w-size)/stride+1); |
| | | int mh = (size*size*dog.c); |
| | | float *matrix = calloc(mh*mw, sizeof(float)); |
| | | |
| | | image edge = make_image((dog.h-size)/stride+1, (dog.w-size)/stride+1, n); |
| | | |
| | | |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(dog.data, dog.c, dog.h, dog.w, size, stride, matrix); |
| | | gemm(0,0,n,mw,mh,1,filters,mh,matrix,mw,1,edge.data,mw); |
| | | } |
| | | end = clock(); |
| | | printf("Convolutions: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | show_image_layers(edge, "Test Convolve"); |
| | | cvWaitKey(0); |
| | | } |
| | | |
| | | void test_color() |
| | | { |
| | | image dog = load_image("test_color.png"); |
| | | image dog = load_image("test_color.png", 300, 400); |
| | | show_image_layers(dog, "Test Color"); |
| | | } |
| | | |
| | | void test_convolutional_layer() |
| | | void verify_convolutional_layer() |
| | | { |
| | | srand(0); |
| | | image dog = load_image("dog.jpg"); |
| | | int i; |
| | | int n = 3; |
| | | int n = 1; |
| | | int stride = 1; |
| | | int size = 3; |
| | | convolutional_layer layer = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride); |
| | | char buff[256]; |
| | | for(i = 0; i < n; ++i) { |
| | | sprintf(buff, "Kernel %d", i); |
| | | show_image(layer.kernels[i], buff); |
| | | } |
| | | run_convolutional_layer(dog, layer); |
| | | float eps = .00000001; |
| | | image test = make_random_image(5,5, 1); |
| | | convolutional_layer layer = *make_convolutional_layer(test.h,test.w,test.c, n, size, stride, RELU); |
| | | image out = get_convolutional_image(layer); |
| | | float **jacobian = calloc(test.h*test.w*test.c, sizeof(float)); |
| | | |
| | | maxpool_layer mlayer = *make_maxpool_layer(layer.output.h, layer.output.w, layer.output.c, 2); |
| | | run_maxpool_layer(layer.output,mlayer); |
| | | forward_convolutional_layer(layer, test.data); |
| | | image base = copy_image(out); |
| | | |
| | | show_image_layers(mlayer.output, "Test Maxpool Layer"); |
| | | for(i = 0; i < test.h*test.w*test.c; ++i){ |
| | | test.data[i] += eps; |
| | | forward_convolutional_layer(layer, test.data); |
| | | image partial = copy_image(out); |
| | | subtract_image(partial, base); |
| | | scale_image(partial, 1/eps); |
| | | jacobian[i] = partial.data; |
| | | test.data[i] -= eps; |
| | | } |
| | | float **jacobian2 = calloc(out.h*out.w*out.c, sizeof(float)); |
| | | image in_delta = make_image(test.h, test.w, test.c); |
| | | image out_delta = get_convolutional_delta(layer); |
| | | for(i = 0; i < out.h*out.w*out.c; ++i){ |
| | | out_delta.data[i] = 1; |
| | | backward_convolutional_layer(layer, in_delta.data); |
| | | image partial = copy_image(in_delta); |
| | | jacobian2[i] = partial.data; |
| | | out_delta.data[i] = 0; |
| | | } |
| | | int j; |
| | | float *j1 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float)); |
| | | float *j2 = calloc(test.h*test.w*test.c*out.h*out.w*out.c, sizeof(float)); |
| | | for(i = 0; i < test.h*test.w*test.c; ++i){ |
| | | for(j =0 ; j < out.h*out.w*out.c; ++j){ |
| | | j1[i*out.h*out.w*out.c + j] = jacobian[i][j]; |
| | | j2[i*out.h*out.w*out.c + j] = jacobian2[j][i]; |
| | | printf("%f %f\n", jacobian[i][j], jacobian2[j][i]); |
| | | } |
| | | } |
| | | |
| | | |
| | | image mj1 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j1); |
| | | image mj2 = float_to_image(test.w*test.h*test.c, out.w*out.h*out.c, 1, j2); |
| | | printf("%f %f\n", avg_image_layer(mj1,0), avg_image_layer(mj2,0)); |
| | | show_image(mj1, "forward jacobian"); |
| | | show_image(mj2, "backward jacobian"); |
| | | } |
| | | |
| | | void test_load() |
| | | { |
| | | image dog = load_image("dog.jpg"); |
| | | image dog = load_image("dog.jpg", 300, 400); |
| | | show_image(dog, "Test Load"); |
| | | show_image_layers(dog, "Test Load"); |
| | | } |
| | | void test_upsample() |
| | | { |
| | | image dog = load_image("dog.jpg"); |
| | | image dog = load_image("dog.jpg", 300, 400); |
| | | int n = 3; |
| | | image up = make_image(n*dog.h, n*dog.w, dog.c); |
| | | upsample_image(dog, n, up); |
| | |
| | | void test_rotate() |
| | | { |
| | | int i; |
| | | image dog = load_image("dog.jpg"); |
| | | image dog = load_image("dog.jpg",300,400); |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < 1001; ++i){ |
| | | rotate_image(dog); |
| | | } |
| | | end = clock(); |
| | | printf("Rotations: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | printf("Rotations: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | show_image(dog, "Test Rotate"); |
| | | |
| | | image random = make_random_image(3,3,3); |
| | |
| | | show_image(random, "Test Rotate Random"); |
| | | } |
| | | |
| | | void test_network() |
| | | { |
| | | network net; |
| | | net.n = 11; |
| | | net.layers = calloc(net.n, sizeof(void *)); |
| | | net.types = calloc(net.n, sizeof(LAYER_TYPE)); |
| | | net.types[0] = CONVOLUTIONAL; |
| | | net.types[1] = MAXPOOL; |
| | | net.types[2] = CONVOLUTIONAL; |
| | | net.types[3] = MAXPOOL; |
| | | net.types[4] = CONVOLUTIONAL; |
| | | net.types[5] = CONVOLUTIONAL; |
| | | net.types[6] = CONVOLUTIONAL; |
| | | net.types[7] = MAXPOOL; |
| | | net.types[8] = CONNECTED; |
| | | net.types[9] = CONNECTED; |
| | | net.types[10] = CONNECTED; |
| | | |
| | | image dog = load_image("test_hinton.jpg"); |
| | | |
| | | int n = 48; |
| | | int stride = 4; |
| | | int size = 11; |
| | | convolutional_layer cl = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride); |
| | | maxpool_layer ml = *make_maxpool_layer(cl.output.h, cl.output.w, cl.output.c, 2); |
| | | |
| | | n = 128; |
| | | size = 5; |
| | | stride = 1; |
| | | convolutional_layer cl2 = *make_convolutional_layer(ml.output.h, ml.output.w, ml.output.c, n, size, stride); |
| | | maxpool_layer ml2 = *make_maxpool_layer(cl2.output.h, cl2.output.w, cl2.output.c, 2); |
| | | |
| | | n = 192; |
| | | size = 3; |
| | | convolutional_layer cl3 = *make_convolutional_layer(ml2.output.h, ml2.output.w, ml2.output.c, n, size, stride); |
| | | convolutional_layer cl4 = *make_convolutional_layer(cl3.output.h, cl3.output.w, cl3.output.c, n, size, stride); |
| | | n = 128; |
| | | convolutional_layer cl5 = *make_convolutional_layer(cl4.output.h, cl4.output.w, cl4.output.c, n, size, stride); |
| | | maxpool_layer ml3 = *make_maxpool_layer(cl5.output.h, cl5.output.w, cl5.output.c, 4); |
| | | connected_layer nl = *make_connected_layer(ml3.output.h*ml3.output.w*ml3.output.c, 4096, RELU); |
| | | connected_layer nl2 = *make_connected_layer(4096, 4096, RELU); |
| | | connected_layer nl3 = *make_connected_layer(4096, 1000, RELU); |
| | | |
| | | net.layers[0] = &cl; |
| | | net.layers[1] = &ml; |
| | | net.layers[2] = &cl2; |
| | | net.layers[3] = &ml2; |
| | | net.layers[4] = &cl3; |
| | | net.layers[5] = &cl4; |
| | | net.layers[6] = &cl5; |
| | | net.layers[7] = &ml3; |
| | | net.layers[8] = &nl; |
| | | net.layers[9] = &nl2; |
| | | net.layers[10] = &nl3; |
| | | |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < 10; ++i){ |
| | | run_network(dog, net); |
| | | rotate_image(dog); |
| | | } |
| | | end = clock(); |
| | | printf("Ran %lf second per iteration\n", (double)(end-start)/CLOCKS_PER_SEC/10); |
| | | |
| | | show_image_layers(get_network_image(net), "Test Network Layer"); |
| | | } |
| | | |
| | | void test_backpropagate() |
| | | { |
| | | int n = 3; |
| | | int size = 4; |
| | | int stride = 10; |
| | | image dog = load_image("dog.jpg"); |
| | | show_image(dog, "Test Backpropagate Input"); |
| | | image dog_copy = copy_image(dog); |
| | | convolutional_layer cl = *make_convolutional_layer(dog.h, dog.w, dog.c, n, size, stride); |
| | | run_convolutional_layer(dog, cl); |
| | | show_image(cl.output, "Test Backpropagate Output"); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < 100; ++i){ |
| | | backpropagate_convolutional_layer(dog_copy, cl); |
| | | } |
| | | end = clock(); |
| | | printf("Backpropagate: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | start = clock(); |
| | | for(i = 0; i < 100; ++i){ |
| | | backpropagate_convolutional_layer_convolve(dog, cl); |
| | | } |
| | | end = clock(); |
| | | printf("Backpropagate Using Convolutions: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | show_image(dog_copy, "Test Backpropagate 1"); |
| | | show_image(dog, "Test Backpropagate 2"); |
| | | subtract_image(dog, dog_copy); |
| | | show_image(dog, "Test Backpropagate Difference"); |
| | | } |
| | | |
| | | void test_ann() |
| | | { |
| | | network net; |
| | | net.n = 3; |
| | | net.layers = calloc(net.n, sizeof(void *)); |
| | | net.types = calloc(net.n, sizeof(LAYER_TYPE)); |
| | | net.types[0] = CONNECTED; |
| | | net.types[1] = CONNECTED; |
| | | net.types[2] = CONNECTED; |
| | | |
| | | connected_layer nl = *make_connected_layer(1, 20, RELU); |
| | | connected_layer nl2 = *make_connected_layer(20, 20, RELU); |
| | | connected_layer nl3 = *make_connected_layer(20, 1, RELU); |
| | | |
| | | net.layers[0] = &nl; |
| | | net.layers[1] = &nl2; |
| | | net.layers[2] = &nl3; |
| | | |
| | | image t = make_image(1,1,1); |
| | | int count = 0; |
| | | |
| | | double avgerr = 0; |
| | | while(1){ |
| | | double v = ((double)rand()/RAND_MAX); |
| | | double truth = v*v; |
| | | set_pixel(t,0,0,0,v); |
| | | run_network(t, net); |
| | | double *out = get_network_output(net); |
| | | double err = pow((out[0]-truth),2.); |
| | | avgerr = .99 * avgerr + .01 * err; |
| | | //if(++count % 100000 == 0) printf("%f\n", avgerr); |
| | | if(++count % 100000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr); |
| | | out[0] = truth - out[0]; |
| | | learn_network(t, net); |
| | | update_network(net, .001); |
| | | } |
| | | |
| | | } |
| | | |
| | | void test_parser() |
| | | { |
| | | network net = parse_network_cfg("test.cfg"); |
| | | image t = make_image(1,1,1); |
| | | network net = parse_network_cfg("test_parser.cfg"); |
| | | float input[1]; |
| | | int count = 0; |
| | | |
| | | double avgerr = 0; |
| | | while(1){ |
| | | double v = ((double)rand()/RAND_MAX); |
| | | double truth = v*v; |
| | | set_pixel(t,0,0,0,v); |
| | | run_network(t, net); |
| | | double *out = get_network_output(net); |
| | | double err = pow((out[0]-truth),2.); |
| | | float avgerr = 0; |
| | | while(++count < 100000000){ |
| | | float v = ((float)rand()/RAND_MAX); |
| | | float truth = v*v; |
| | | input[0] = v; |
| | | forward_network(net, input); |
| | | float *out = get_network_output(net); |
| | | float *delta = get_network_delta(net); |
| | | float err = pow((out[0]-truth),2.); |
| | | avgerr = .99 * avgerr + .01 * err; |
| | | //if(++count % 100000 == 0) printf("%f\n", avgerr); |
| | | if(++count % 100000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr); |
| | | out[0] = truth - out[0]; |
| | | learn_network(t, net); |
| | | update_network(net, .001); |
| | | if(count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr); |
| | | delta[0] = truth - out[0]; |
| | | backward_network(net, input, &truth); |
| | | update_network(net, .001,0,0); |
| | | } |
| | | } |
| | | |
| | | void test_data() |
| | | { |
| | | char *labels[] = {"cat","dog"}; |
| | | data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2, 300, 400); |
| | | free_data(train); |
| | | } |
| | | |
| | | void test_full() |
| | | { |
| | | network net = parse_network_cfg("full.cfg"); |
| | | srand(2222222); |
| | | int i = 800; |
| | | char *labels[] = {"cat","dog"}; |
| | | float lr = .00001; |
| | | float momentum = .9; |
| | | float decay = 0.01; |
| | | while(i++ < 1000 || 1){ |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2, 256, 256); |
| | | image im = float_to_image(256, 256, 3,train.X.vals[0]); |
| | | show_image(im, "input"); |
| | | cvWaitKey(100); |
| | | //scale_data_rows(train, 1./255.); |
| | | normalize_data_rows(train); |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, 100, lr, momentum, decay); |
| | | end = clock(); |
| | | printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay); |
| | | free_data(train); |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "backup_%d.cfg", i); |
| | | //save_network(net, buff); |
| | | } |
| | | //lr *= .99; |
| | | } |
| | | } |
| | | |
| | | void test_nist() |
| | | { |
| | | srand(444444); |
| | | srand(888888); |
| | | network net = parse_network_cfg("nist.cfg"); |
| | | data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(train); |
| | | normalize_data_rows(test); |
| | | //randomize_data(train); |
| | | int count = 0; |
| | | float lr = .0005; |
| | | float momentum = .9; |
| | | float decay = 0.001; |
| | | clock_t start = clock(), end; |
| | | while(++count <= 100){ |
| | | //visualize_network(net); |
| | | float loss = train_network_sgd(net, train, 1000, lr, momentum, decay); |
| | | printf("%5d Training Loss: %lf, Params: %f %f %f, ",count*100, loss, lr, momentum, decay); |
| | | end = clock(); |
| | | printf("Time: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | start=end; |
| | | //cvWaitKey(100); |
| | | //lr /= 2; |
| | | if(count%5 == 0){ |
| | | float train_acc = network_accuracy(net, train); |
| | | fprintf(stderr, "\nTRAIN: %f\n", train_acc); |
| | | float test_acc = network_accuracy(net, test); |
| | | fprintf(stderr, "TEST: %f\n\n", test_acc); |
| | | printf("%d, %f, %f\n", count, train_acc, test_acc); |
| | | //lr *= .5; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void test_ensemble() |
| | | { |
| | | int i; |
| | | srand(888888); |
| | | data d = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
| | | normalize_data_rows(d); |
| | | data test = load_categorical_data_csv("mnist/mnist_test.csv", 0,10); |
| | | normalize_data_rows(test); |
| | | data train = d; |
| | | // data *split = split_data(d, 1, 10); |
| | | // data train = split[0]; |
| | | // data test = split[1]; |
| | | matrix prediction = make_matrix(test.y.rows, test.y.cols); |
| | | int n = 30; |
| | | for(i = 0; i < n; ++i){ |
| | | int count = 0; |
| | | float lr = .0005; |
| | | float momentum = .9; |
| | | float decay = .01; |
| | | network net = parse_network_cfg("nist.cfg"); |
| | | while(++count <= 15){ |
| | | float acc = train_network_sgd(net, train, train.X.rows, lr, momentum, decay); |
| | | printf("Training Accuracy: %lf Learning Rate: %f Momentum: %f Decay: %f\n", acc, lr, momentum, decay ); |
| | | lr /= 2; |
| | | } |
| | | matrix partial = network_predict_data(net, test); |
| | | float acc = matrix_accuracy(test.y, partial); |
| | | printf("Model Accuracy: %lf\n", acc); |
| | | matrix_add_matrix(partial, prediction); |
| | | acc = matrix_accuracy(test.y, prediction); |
| | | printf("Current Ensemble Accuracy: %lf\n", acc); |
| | | free_matrix(partial); |
| | | } |
| | | float acc = matrix_accuracy(test.y, prediction); |
| | | printf("Full Ensemble Accuracy: %lf\n", acc); |
| | | } |
| | | |
| | | void test_random_classify() |
| | | { |
| | | network net = parse_network_cfg("connected.cfg"); |
| | | matrix m = csv_to_matrix("train.csv"); |
| | | //matrix ho = hold_out_matrix(&m, 2500); |
| | | float *truth = pop_column(&m, 0); |
| | | //float *ho_truth = pop_column(&ho, 0); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | int count = 0; |
| | | while(++count <= 300){ |
| | | for(i = 0; i < m.rows; ++i){ |
| | | int index = rand()%m.rows; |
| | | //image p = float_to_image(1690,1,1,m.vals[index]); |
| | | //normalize_image(p); |
| | | forward_network(net, m.vals[index]); |
| | | float *out = get_network_output(net); |
| | | float *delta = get_network_delta(net); |
| | | //printf("%f\n", out[0]); |
| | | delta[0] = truth[index] - out[0]; |
| | | // printf("%f\n", delta[0]); |
| | | //printf("%f %f\n", truth[index], out[0]); |
| | | //backward_network(net, m.vals[index], ); |
| | | update_network(net, .00001, 0,0); |
| | | } |
| | | //float test_acc = error_network(net, m, truth); |
| | | //float valid_acc = error_network(net, ho, ho_truth); |
| | | //printf("%f, %f\n", test_acc, valid_acc); |
| | | //fprintf(stderr, "%5d: %f Valid: %f\n",count, test_acc, valid_acc); |
| | | //if(valid_acc > .70) break; |
| | | } |
| | | end = clock(); |
| | | FILE *fp = fopen("submission/out.txt", "w"); |
| | | matrix test = csv_to_matrix("test.csv"); |
| | | truth = pop_column(&test, 0); |
| | | for(i = 0; i < test.rows; ++i){ |
| | | forward_network(net, test.vals[i]); |
| | | float *out = get_network_output(net); |
| | | if(fabs(out[0]) < .5) fprintf(fp, "0\n"); |
| | | else fprintf(fp, "1\n"); |
| | | } |
| | | fclose(fp); |
| | | printf("Neural Net Learning: %lf seconds\n", (float)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | |
| | | void test_split() |
| | | { |
| | | data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
| | | data *split = split_data(train, 0, 13); |
| | | printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows); |
| | | } |
| | | |
| | | void test_im2row() |
| | | { |
| | | int h = 20; |
| | | int w = 20; |
| | | int c = 3; |
| | | int stride = 1; |
| | | int size = 11; |
| | | image test = make_random_image(h,w,c); |
| | | int mc = 1; |
| | | int mw = ((h-size)/stride+1)*((w-size)/stride+1); |
| | | int mh = (size*size*c); |
| | | int msize = mc*mw*mh; |
| | | float *matrix = calloc(msize, sizeof(float)); |
| | | int i; |
| | | for(i = 0; i < 1000; ++i){ |
| | | im2col_cpu(test.data, c, h, w, size, stride, matrix); |
| | | //image render = float_to_image(mh, mw, mc, matrix); |
| | | } |
| | | } |
| | | |
| | | void train_VOC() |
| | | { |
| | | network net = parse_network_cfg("cfg/voc_backup_ramp_80.cfg"); |
| | | srand(2222222); |
| | | int i = 0; |
| | | char *labels[] = {"aeroplane","bicycle","bird","boat","bottle","bus","car","cat","chair","cow","diningtable","dog","horse","motorbike","person","pottedplant","sheep","sofa","train","tvmonitor"}; |
| | | float lr = .00001; |
| | | float momentum = .9; |
| | | float decay = 0.01; |
| | | while(i++ < 1000 || 1){ |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | data train = load_data_image_pathfile_random("images/VOC2012/train_paths.txt", 1000, labels, 20, 300, 400); |
| | | image im = float_to_image(300, 400, 3,train.X.vals[0]); |
| | | show_image(im, "input"); |
| | | cvWaitKey(100); |
| | | normalize_data_rows(train); |
| | | clock_t start = clock(), end; |
| | | float loss = train_network_sgd(net, train, 1000, lr, momentum, decay); |
| | | end = clock(); |
| | | printf("%d: %f, Time: %lf seconds, LR: %f, Momentum: %f, Decay: %f\n", i, loss, (float)(end-start)/CLOCKS_PER_SEC, lr, momentum, decay); |
| | | free_data(train); |
| | | if(i%10==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "cfg/voc_backup_ramp_%d.cfg", i); |
| | | save_network(net, buff); |
| | | } |
| | | //lr *= .99; |
| | | } |
| | | } |
| | | |
| | | int main() |
| | | { |
| | | test_parser(); |
| | | //feenableexcept(FE_DIVBYZERO | FE_INVALID | FE_OVERFLOW); |
| | | |
| | | //test_blas(); |
| | | //test_convolve_matrix(); |
| | | // test_im2row(); |
| | | //test_split(); |
| | | //test_ensemble(); |
| | | //test_nist(); |
| | | //test_full(); |
| | | train_VOC(); |
| | | //test_random_preprocess(); |
| | | //test_random_classify(); |
| | | //test_parser(); |
| | | //test_backpropagate(); |
| | | //test_ann(); |
| | | //test_convolve(); |
| | |
| | | //test_load(); |
| | | //test_network(); |
| | | //test_convolutional_layer(); |
| | | //verify_convolutional_layer(); |
| | | //test_color(); |
| | | cvWaitKey(0); |
| | | //cvWaitKey(0); |
| | | return 0; |
| | | } |