Joseph Redmon
2014-10-25 14303717dcddae43cdc55beb0685dae86f566fd8
src/convolutional_layer.c
@@ -2,6 +2,7 @@
#include "utils.h"
#include "mini_blas.h"
#include <stdio.h>
#include <time.h>
int convolutional_out_height(convolutional_layer layer)
{
@@ -64,8 +65,8 @@
    layer->bias_updates = calloc(n, sizeof(float));
    layer->bias_momentum = calloc(n, sizeof(float));
    float scale = 1./(size*size*c);
    //scale = .0001;
    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform()-.5);
    scale = .05;
    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5);
    for(i = 0; i < n; ++i){
        //layer->biases[i] = rand_normal()*scale + scale;
        layer->biases[i] = .5;
@@ -147,15 +148,9 @@
    for(i = 0; i < layer.batch; ++i){
        gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
        c += n*m;
        in += layer.h*layer.w*layer.c;
        b += k*n;
        c += n*m;
    }
    /*
    int i;
    for(i = 0; i < m*n; ++i) printf("%f, ", layer.output[i]);
    printf("\n");
    */
    activate_array(layer.output, m*n*layer.batch, layer.activation);
}
@@ -166,7 +161,7 @@
        *convolutional_out_width(layer);
    for(b = 0; b < layer.batch; ++b){
        for(i = 0; i < layer.n; ++i){
            layer.bias_updates[i] += mean_array(layer.delta+size*(i+b*layer.n), size);
            layer.bias_updates[i] += sum_array(layer.delta+size*(i+b*layer.n), size);
        }
    }
}
@@ -201,14 +196,15 @@
        b = layer.delta;
        c = layer.col_image;
        memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
        for(i = 0; i < layer.batch; ++i){
            gemm(1,0,m,n,k,1,a,m,b,n,0,c,n);
            col2im_cpu(c, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta);
            c += k*n;
            delta += layer.h*layer.w*layer.c;
            b += k*n;
            c += m*n;
        }
        memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float));
        col2im_cpu(layer.col_image, layer.batch, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta);
    }
}
@@ -216,7 +212,7 @@
{
    int size = layer.size*layer.size*layer.c*layer.n;
    axpy_cpu(layer.n, layer.learning_rate, layer.bias_updates, 1, layer.biases, 1);
    scal_cpu(layer.n,layer.momentum, layer.bias_updates, 1);
    scal_cpu(layer.n, layer.momentum, layer.bias_updates, 1);
    scal_cpu(size, 1.-layer.learning_rate*layer.decay, layer.filters, 1);
    axpy_cpu(size, layer.learning_rate, layer.filter_updates, 1, layer.filters, 1);
@@ -278,22 +274,184 @@
}
#ifdef GPU
cl_kernel get_convolutional_learn_bias_kernel()
{
    static int init = 0;
    static cl_kernel kernel;
    if(!init){
        kernel = get_kernel("src/convolutional_layer.cl", "learn_bias", 0);
        init = 1;
    }
    return kernel;
}
void learn_bias_convolutional_layer_ongpu(convolutional_layer layer)
{
    int size = convolutional_out_height(layer) * convolutional_out_width(layer);
    cl_setup();
    cl_kernel kernel = get_convolutional_learn_bias_kernel();
    cl_command_queue queue = cl.queue;
    cl_uint i = 0;
    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.batch), (void*) &layer.batch);
    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
    cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.delta_cl), (void*) &layer.delta_cl);
    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.bias_updates_cl), (void*) &layer.bias_updates_cl);
    check_error(cl);
    const size_t global_size[] = {layer.n};
    clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, 0, 0, 0, 0);
    check_error(cl);
}
cl_kernel get_convolutional_bias_kernel()
{
    static int init = 0;
    static cl_kernel kernel;
    if(!init){
        kernel = get_kernel("src/convolutional_layer.cl", "bias", 0);
        init = 1;
    }
    return kernel;
}
void bias_output_gpu(const convolutional_layer layer)
{
    int out_h = convolutional_out_height(layer);
    int out_w = convolutional_out_width(layer);
    int size = out_h*out_w;
    cl_setup();
    cl_kernel kernel = get_convolutional_bias_kernel();
    cl_command_queue queue = cl.queue;
    cl_uint i = 0;
    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
    cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.biases_cl), (void*) &layer.biases_cl);
    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
    check_error(cl);
    const size_t global_size[] = {layer.batch, layer.n*size};
    clEnqueueNDRangeKernel(queue, kernel, 2, 0, global_size, 0, 0, 0, 0);
    check_error(cl);
}
//#define TIMEIT
void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
{
    int i;
    int m = layer.n;
    int k = layer.size*layer.size*layer.c;
    int n = convolutional_out_height(layer)*
        convolutional_out_width(layer)*
        layer.batch;
        convolutional_out_width(layer);
    cl_write_array(layer.filters_cl, layer.filters, m*k);
    cl_mem a = layer.filters_cl;
    cl_mem b = layer.col_image_cl;
    cl_mem c = layer.output_cl;
    im2col_ongpu(in, layer.batch, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, b);
    gemm_ongpu(0,0,m,n,k,1,a,k,b,n,0,c,n);
    activate_array_ongpu(layer.output_cl, m*n, layer.activation);
    cl_read_array(layer.output_cl, layer.output, m*n);
    bias_output_gpu(layer);
    #ifdef TIMEIT
    clock_t time = clock();
    printf("Forward\n");
    #endif
    im2col_ongpu(in, layer.batch, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_cl);
    #ifdef TIMEIT
    clFinish(cl.queue);
    printf("Im2col %f\n", sec(clock()-time));
    time = clock();
    #endif
    for(i = 0; i < layer.batch; ++i){
        cl_mem a = layer.filters_cl;
        cl_mem b = cl_sub_array(layer.col_image_cl, i*k*n, k*n);
        cl_mem c = cl_sub_array(layer.output_cl, i*m*n, m*n);
        gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c,n);
        clReleaseMemObject(b);
        clReleaseMemObject(c);
    }
    #ifdef TIMEIT
    clFinish(cl.queue);
    printf("Gemm %f\n", sec(clock()-time));
    #endif
    activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation);
    #ifdef TIMEIT
    cl_read_array(layer.output_cl, layer.output, m*n*layer.batch);
    #endif
}
void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem delta_cl)
{
    int i;
    int m = layer.n;
    int n = layer.size*layer.size*layer.c;
    int k = convolutional_out_height(layer)*
        convolutional_out_width(layer);
    gradient_array_ongpu(layer.output_cl, m*k*layer.batch, layer.activation, layer.delta_cl);
    learn_bias_convolutional_layer_ongpu(layer);
    for(i = 0; i < layer.batch; ++i){
        cl_mem a = cl_sub_array(layer.delta_cl,i*m*k, m*k);
        cl_mem b = cl_sub_array(layer.col_image_cl,i*k*n, k*n);
        cl_mem c = layer.filter_updates_cl;
        gemm_ongpu(0,1,m,n,k,1,a,k,b,k,1,c,n);
        clReleaseMemObject(a);
        clReleaseMemObject(b);
    }
    //cl_read_array(layer.delta_cl, layer.delta, m*k*layer.batch);
    if(delta_cl){
        m = layer.size*layer.size*layer.c;
        k = layer.n;
        n = convolutional_out_height(layer)*
            convolutional_out_width(layer);
        for(i = 0; i < layer.batch; ++i){
            cl_mem a = layer.filters_cl;
            cl_mem b = cl_sub_array(layer.delta_cl, i*k*n, k*n);
            cl_mem c = cl_sub_array(layer.col_image_cl, i*m*n, m*n);
            gemm_ongpu(1,0,m,n,k,1,a,m,b,n,0,c,n);
            clReleaseMemObject(b);
            clReleaseMemObject(c);
        }
        scal_ongpu(layer.batch*layer.h*layer.w*layer.c,0,delta_cl, 1);
        col2im_ongpu(layer.col_image_cl, layer.batch, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta_cl);
    }
}
void pull_convolutional_layer(convolutional_layer layer)
{
    cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
    cl_read_array(layer.biases_cl, layer.biases, layer.n);
}
void push_convolutional_layer(convolutional_layer layer)
{
    cl_write_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
    cl_write_array(layer.biases_cl, layer.biases, layer.n);
}
void update_convolutional_layer_gpu(convolutional_layer layer)
{
    int size = layer.size*layer.size*layer.c*layer.n;
    axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
    scal_ongpu(layer.n,layer.momentum, layer.bias_updates_cl, 1);
    scal_ongpu(size, 1.-layer.learning_rate*layer.decay, layer.filters_cl, 1);
    axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1);
    scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1);
    pull_convolutional_layer(layer);
}
#endif