Joseph Redmon
2015-01-27 153705226d8ca746478b69eeac9bc854766daa11
src/convolutional_layer.c
@@ -1,6 +1,9 @@
#include "convolutional_layer.h"
#include "utils.h"
#include "mini_blas.h"
#include "im2col.h"
#include "col2im.h"
#include "blas.h"
#include "gemm.h"
#include <stdio.h>
#include <time.h>
@@ -77,15 +80,15 @@
    layer->delta  = calloc(layer->batch*out_h * out_w * n, sizeof(float));
    #ifdef GPU
    layer->filters_cl = cl_make_array(layer->filters, c*n*size*size);
    layer->filter_updates_cl = cl_make_array(layer->filter_updates, c*n*size*size);
    layer->filters_gpu = cuda_make_array(layer->filters, c*n*size*size);
    layer->filter_updates_gpu = cuda_make_array(layer->filter_updates, c*n*size*size);
    layer->biases_cl = cl_make_array(layer->biases, n);
    layer->bias_updates_cl = cl_make_array(layer->bias_updates, n);
    layer->biases_gpu = cuda_make_array(layer->biases, n);
    layer->bias_updates_gpu = cuda_make_array(layer->bias_updates, n);
    layer->col_image_cl = cl_make_array(layer->col_image, out_h*out_w*size*size*c);
    layer->delta_cl = cl_make_array(layer->delta, layer->batch*out_h*out_w*n);
    layer->output_cl = cl_make_array(layer->output, layer->batch*out_h*out_w*n);
    layer->col_image_gpu = cuda_make_array(layer->col_image, out_h*out_w*size*size*c);
    layer->delta_gpu = cuda_make_array(layer->delta, layer->batch*out_h*out_w*n);
    layer->output_gpu = cuda_make_array(layer->output, layer->batch*out_h*out_w*n);
    #endif
    layer->activation = activation;
@@ -140,7 +143,6 @@
    float *b = layer.col_image;
    float *c = layer.output;
    for(i = 0; i < layer.batch; ++i){
        im2col_cpu(in, layer.c, layer.h, layer.w, 
            layer.size, layer.stride, layer.pad, b);
@@ -265,162 +267,3 @@
    return single_filters;
}
#ifdef GPU
#define BLOCK 32
#define STR_HELPER(x) #x
#define STR(x) STR_HELPER(x)
cl_kernel get_convolutional_learn_bias_kernel()
{
    static int init = 0;
    static cl_kernel kernel;
    if(!init){
        kernel = get_kernel("src/convolutional_layer.cl", "learn_bias", "-D BLOCK=" STR(BLOCK));
        init = 1;
    }
    return kernel;
}
void learn_bias_convolutional_layer_ongpu(convolutional_layer layer)
{
    int size = convolutional_out_height(layer) * convolutional_out_width(layer);
    cl_kernel kernel = get_convolutional_learn_bias_kernel();
    cl_command_queue queue = cl.queue;
    cl_uint i = 0;
    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.batch), (void*) &layer.batch);
    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
    cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.delta_cl), (void*) &layer.delta_cl);
    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.bias_updates_cl), (void*) &layer.bias_updates_cl);
    check_error(cl);
    const size_t global_size[] = {layer.n*BLOCK};
    const size_t local_size[] = {BLOCK};
    cl.error = clEnqueueNDRangeKernel(queue, kernel, 1, 0, global_size, local_size, 0, 0, 0);
    check_error(cl);
}
cl_kernel get_convolutional_bias_kernel()
{
    static int init = 0;
    static cl_kernel kernel;
    if(!init){
        kernel = get_kernel("src/convolutional_layer.cl", "bias", "-D BLOCK=" STR(BLOCK));
        init = 1;
    }
    return kernel;
}
void bias_output_gpu(const convolutional_layer layer)
{
    int out_h = convolutional_out_height(layer);
    int out_w = convolutional_out_width(layer);
    int size = out_h*out_w;
    cl_kernel kernel = get_convolutional_bias_kernel();
    cl_command_queue queue = cl.queue;
    cl_uint i = 0;
    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.n), (void*) &layer.n);
    cl.error = clSetKernelArg(kernel, i++, sizeof(size), (void*) &size);
    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.biases_cl), (void*) &layer.biases_cl);
    cl.error = clSetKernelArg(kernel, i++, sizeof(layer.output_cl), (void*) &layer.output_cl);
    check_error(cl);
    const size_t global_size[] = {layer.n*size, layer.batch};
    cl.error = clEnqueueNDRangeKernel(queue, kernel, 2, 0, global_size, 0, 0, 0, 0);
    check_error(cl);
}
//#define TIMEIT
void forward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in)
{
    int i;
    int m = layer.n;
    int k = layer.size*layer.size*layer.c;
    int n = convolutional_out_height(layer)*
        convolutional_out_width(layer);
    bias_output_gpu(layer);
    for(i = 0; i < layer.batch; ++i){
        im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_cl);
        cl_mem a = layer.filters_cl;
        cl_mem b = layer.col_image_cl;
        cl_mem c = layer.output_cl;
        gemm_ongpu_offset(0,0,m,n,k,1.,a,0,k,b,0,n,1.,c,i*m*n,n);
    }
    activate_array_ongpu(layer.output_cl, m*n*layer.batch, layer.activation);
}
void backward_convolutional_layer_gpu(convolutional_layer layer, cl_mem in, cl_mem delta_cl)
{
    int i;
    int m = layer.n;
    int n = layer.size*layer.size*layer.c;
    int k = convolutional_out_height(layer)*
        convolutional_out_width(layer);
    gradient_array_ongpu(layer.output_cl, m*k*layer.batch, layer.activation, layer.delta_cl);
    learn_bias_convolutional_layer_ongpu(layer);
    if(delta_cl) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_cl, 1);
    for(i = 0; i < layer.batch; ++i){
        cl_mem a = layer.delta_cl;
        cl_mem b = layer.col_image_cl;
        cl_mem c = layer.filter_updates_cl;
        im2col_ongpu(in, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, layer.col_image_cl);
        gemm_ongpu_offset(0,1,m,n,k,1,a,i*m*k,k,b,0,k,1,c,0,n);
        if(delta_cl){
            cl_mem a = layer.filters_cl;
            cl_mem b = layer.delta_cl;
            cl_mem c = layer.col_image_cl;
            gemm_ongpu_offset(1,0,n,k,m,1,a,0,n,b,i*k*m,k,0,c,0,k);
            col2im_ongpu(layer.col_image_cl, i*layer.c*layer.h*layer.w, layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, layer.pad, delta_cl);
        }
    }
}
void pull_convolutional_layer(convolutional_layer layer)
{
    cl_read_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
    cl_read_array(layer.biases_cl, layer.biases, layer.n);
    cl_read_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
    cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.n);
}
void push_convolutional_layer(convolutional_layer layer)
{
    cl_write_array(layer.filters_cl, layer.filters, layer.c*layer.n*layer.size*layer.size);
    cl_write_array(layer.biases_cl, layer.biases, layer.n);
    cl_write_array(layer.filter_updates_cl, layer.filter_updates, layer.c*layer.n*layer.size*layer.size);
    cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.n);
}
void update_convolutional_layer_gpu(convolutional_layer layer)
{
    int size = layer.size*layer.size*layer.c*layer.n;
    axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1);
    scal_ongpu(layer.n,layer.momentum, layer.bias_updates_cl, 1);
    axpy_ongpu(size, -layer.decay, layer.filters_cl, 1, layer.filter_updates_cl, 1);
    axpy_ongpu(size, layer.learning_rate, layer.filter_updates_cl, 1, layer.filters_cl, 1);
    scal_ongpu(size, layer.momentum, layer.filter_updates_cl, 1);
    //pull_convolutional_layer(layer);
}
#endif