| | |
| | | #include "softmax_layer.h" |
| | | #include "mini_blas.h" |
| | | #include "blas.h" |
| | | #include "cuda.h" |
| | | #include <float.h> |
| | | #include <math.h> |
| | | #include <stdlib.h> |
| | | #include <stdio.h> |
| | |
| | | layer->output = calloc(inputs*batch, sizeof(float)); |
| | | layer->delta = calloc(inputs*batch, sizeof(float)); |
| | | layer->jacobian = calloc(inputs*inputs*batch, sizeof(float)); |
| | | #ifdef GPU |
| | | layer->output_gpu = cuda_make_array(layer->output, inputs*batch); |
| | | layer->delta_gpu = cuda_make_array(layer->delta, inputs*batch); |
| | | #endif |
| | | return layer; |
| | | } |
| | | |
| | | /* UNSTABLE! |
| | | void forward_softmax_layer(const softmax_layer layer, float *input) |
| | | { |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | sum += exp(input[i]); |
| | | } |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | layer.output[i] = exp(input[i])/sum; |
| | | } |
| | | } |
| | | */ |
| | | void forward_softmax_layer(const softmax_layer layer, float *input) |
| | | { |
| | | int i,b; |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | float sum = 0; |
| | | float largest = 0; |
| | | float largest = -FLT_MAX; |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | if(input[i+b*layer.inputs] > largest) largest = input[i+b*layer.inputs]; |
| | | } |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | sum += exp(input[i+b*layer.inputs]-largest); |
| | | //printf("%f, ", input[i]); |
| | | } |
| | | //printf("\n"); |
| | | if(sum) sum = largest+log(sum); |
| | | else sum = largest-100; |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | |
| | | } |
| | | } |
| | | |
| | | void backward_softmax_layer(const softmax_layer layer, float *input, float *delta) |
| | | void backward_softmax_layer(const softmax_layer layer, float *delta) |
| | | { |
| | | /* |
| | | int i,j,b; |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | for(i = 0; i < layer.inputs; ++i){ |
| | | for(j = 0; j < layer.inputs; ++j){ |
| | | int d = (i==j); |
| | | layer.jacobian[b*layer.inputs*layer.inputs + i*layer.inputs + j] = |
| | | layer.output[b*layer.inputs + i] * (d - layer.output[b*layer.inputs + j]); |
| | | } |
| | | } |
| | | } |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | int M = layer.inputs; |
| | | int N = 1; |
| | | int K = layer.inputs; |
| | | float *A = layer.jacobian + b*layer.inputs*layer.inputs; |
| | | float *B = layer.delta + b*layer.inputs; |
| | | float *C = delta + b*layer.inputs; |
| | | gemm(0,0,M,N,K,1,A,K,B,N,0,C,N); |
| | | } |
| | | */ |
| | | |
| | | int i; |
| | | for(i = 0; i < layer.inputs*layer.batch; ++i){ |
| | | delta[i] = layer.delta[i]; |