| | |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | #include "option_list.h" |
| | | #include "blas.h" |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | |
| | | char *label_list = option_find_str(options, "labels", "data/labels.list"); |
| | | char *valid_list = option_find_str(options, "valid", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int topk = option_find_int(options, "topk", 1); |
| | | int topk = option_find_int(options, "top", 1); |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(valid_list); |
| | |
| | | clock_t time; |
| | | float avg_acc = 0; |
| | | float avg_topk = 0; |
| | | int splits = 50; |
| | | int splits = m/1000; |
| | | int num = (i+1)*m/splits - i*m/splits; |
| | | |
| | | data val, buffer; |
| | |
| | | } |
| | | } |
| | | |
| | | void validate_classifier_10(char *datacfg, char *filename, char *weightfile) |
| | | { |
| | | int i, j; |
| | | network net = parse_network_cfg(filename); |
| | | set_batch_network(&net, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | srand(time(0)); |
| | | |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | char *label_list = option_find_str(options, "labels", "data/labels.list"); |
| | | char *valid_list = option_find_str(options, "valid", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int topk = option_find_int(options, "top", 1); |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(valid_list); |
| | | |
| | | char **paths = (char **)list_to_array(plist); |
| | | int m = plist->size; |
| | | free_list(plist); |
| | | |
| | | float avg_acc = 0; |
| | | float avg_topk = 0; |
| | | int *indexes = calloc(topk, sizeof(int)); |
| | | |
| | | for(i = 0; i < m; ++i){ |
| | | int class = -1; |
| | | char *path = paths[i]; |
| | | for(j = 0; j < classes; ++j){ |
| | | if(strstr(path, labels[j])){ |
| | | class = j; |
| | | break; |
| | | } |
| | | } |
| | | image im = load_image_color(paths[i], 256, 256); |
| | | image images[10]; |
| | | images[0] = crop_image(im, -16, -16, 256, 256); |
| | | images[1] = crop_image(im, 16, -16, 256, 256); |
| | | images[2] = crop_image(im, 0, 0, 256, 256); |
| | | images[3] = crop_image(im, -16, 16, 256, 256); |
| | | images[4] = crop_image(im, 16, 16, 256, 256); |
| | | flip_image(im); |
| | | images[5] = crop_image(im, -16, -16, 256, 256); |
| | | images[6] = crop_image(im, 16, -16, 256, 256); |
| | | images[7] = crop_image(im, 0, 0, 256, 256); |
| | | images[8] = crop_image(im, -16, 16, 256, 256); |
| | | images[9] = crop_image(im, 16, 16, 256, 256); |
| | | float *pred = calloc(classes, sizeof(float)); |
| | | for(j = 0; j < 10; ++j){ |
| | | float *p = network_predict(net, images[j].data); |
| | | axpy_cpu(classes, 1, p, 1, pred, 1); |
| | | free_image(images[j]); |
| | | } |
| | | free_image(im); |
| | | top_k(pred, classes, topk, indexes); |
| | | free(pred); |
| | | if(indexes[0] == class) avg_acc += 1; |
| | | for(j = 0; j < topk; ++j){ |
| | | if(indexes[j] == class) avg_topk += 1; |
| | | } |
| | | |
| | | printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); |
| | | } |
| | | } |
| | | |
| | | void validate_classifier_multi(char *datacfg, char *filename, char *weightfile) |
| | | { |
| | | int i, j; |
| | | network net = parse_network_cfg(filename); |
| | | set_batch_network(&net, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | srand(time(0)); |
| | | |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | char *label_list = option_find_str(options, "labels", "data/labels.list"); |
| | | char *valid_list = option_find_str(options, "valid", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int topk = option_find_int(options, "top", 1); |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(valid_list); |
| | | int scales[] = {224, 256, 384, 480, 640}; |
| | | int nscales = sizeof(scales)/sizeof(scales[0]); |
| | | |
| | | char **paths = (char **)list_to_array(plist); |
| | | int m = plist->size; |
| | | free_list(plist); |
| | | |
| | | float avg_acc = 0; |
| | | float avg_topk = 0; |
| | | int *indexes = calloc(topk, sizeof(int)); |
| | | |
| | | for(i = 0; i < m; ++i){ |
| | | int class = -1; |
| | | char *path = paths[i]; |
| | | for(j = 0; j < classes; ++j){ |
| | | if(strstr(path, labels[j])){ |
| | | class = j; |
| | | break; |
| | | } |
| | | } |
| | | float *pred = calloc(classes, sizeof(float)); |
| | | image im = load_image_color(paths[i], 0, 0); |
| | | for(j = 0; j < nscales; ++j){ |
| | | int w, h; |
| | | if(im.w < im.h){ |
| | | w = scales[j]; |
| | | h = (im.h*w)/im.w; |
| | | } else { |
| | | h = scales[j]; |
| | | w = (im.w * h) / im.h; |
| | | } |
| | | resize_network(&net, w, h); |
| | | image r = resize_image(im, w, h); |
| | | float *p = network_predict(net, r.data); |
| | | axpy_cpu(classes, 1, p, 1, pred, 1); |
| | | flip_image(r); |
| | | p = network_predict(net, r.data); |
| | | axpy_cpu(classes, 1, p, 1, pred, 1); |
| | | free_image(r); |
| | | } |
| | | free_image(im); |
| | | top_k(pred, classes, topk, indexes); |
| | | free(pred); |
| | | if(indexes[0] == class) avg_acc += 1; |
| | | for(j = 0; j < topk; ++j){ |
| | | if(indexes[j] == class) avg_topk += 1; |
| | | } |
| | | |
| | | printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); |
| | | } |
| | | } |
| | | |
| | | void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | |
| | | |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | char *label_list = option_find_str(options, "labels", "data/labels.list"); |
| | | char *name_list = option_find_str(options, "names", 0); |
| | | if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list"); |
| | | int top = option_find_int(options, "top", 1); |
| | | |
| | | int i = 0; |
| | | char **names = get_labels(label_list); |
| | | char **names = get_labels(name_list); |
| | | clock_t time; |
| | | int indexes[10]; |
| | | int *indexes = calloc(top, sizeof(int)); |
| | | char buff[256]; |
| | | char *input = buff; |
| | | while(1){ |
| | |
| | | if(!input) return; |
| | | strtok(input, "\n"); |
| | | } |
| | | image im = load_image_color(input, 256, 256); |
| | | image im = load_image_color(input, net.w, net.h); |
| | | float *X = im.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | |
| | | } |
| | | } |
| | | |
| | | void test_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int target_layer) |
| | | void test_classifier(char *datacfg, char *cfgfile, char *weightfile, int target_layer) |
| | | { |
| | | int curr = 0; |
| | | network net = parse_network_cfg(filename); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | char *test_list = option_find_str(options, "test", "data/test.list"); |
| | | char *label_list = option_find_str(options, "labels", "data/labels.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(test_list); |
| | | |
| | | char **paths = (char **)list_to_array(plist); |
| | |
| | | args.classes = classes; |
| | | args.n = net.batch; |
| | | args.m = 0; |
| | | args.labels = labels; |
| | | args.labels = 0; |
| | | args.d = &buffer; |
| | | args.type = CLASSIFICATION_DATA; |
| | | |
| | |
| | | time=clock(); |
| | | matrix pred = network_predict_data(net, val); |
| | | |
| | | int i; |
| | | int i, j; |
| | | if (target_layer >= 0){ |
| | | //layer l = net.layers[target_layer]; |
| | | } |
| | | |
| | | for(i = 0; i < val.X.rows; ++i){ |
| | | |
| | | for(i = 0; i < pred.rows; ++i){ |
| | | printf("%s", paths[curr-net.batch+i]); |
| | | for(j = 0; j < pred.cols; ++j){ |
| | | printf("\t%g", pred.vals[i][j]); |
| | | } |
| | | printf("\n"); |
| | | } |
| | | |
| | | free_matrix(pred); |
| | | |
| | | fprintf(stderr, "%lf seconds, %d images\n", sec(clock()-time), val.X.rows); |
| | | fprintf(stderr, "%lf seconds, %d images, %d total\n", sec(clock()-time), val.X.rows, curr); |
| | | free_data(val); |
| | | } |
| | | } |
| | |
| | | int layer = layer_s ? atoi(layer_s) : -1; |
| | | if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename); |
| | | else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights); |
| | | else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights,filename, layer); |
| | | else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer); |
| | | else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights); |
| | | else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights); |
| | | } |
| | | |
| | | |