| | |
| | | #include "blas.h" |
| | | #include "assert.h" |
| | | #include "classifier.h" |
| | | #include "cuda.h" |
| | | #ifdef WIN32 |
| | | #include <time.h> |
| | | #include <winsock.h> |
| | | #include "gettimeofday.h" |
| | | #else |
| | | #include <sys/time.h> |
| | | #endif |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #include "opencv2/core/version.hpp" |
| | | #ifndef CV_VERSION_EPOCH |
| | | #include "opencv2/videoio/videoio_c.h" |
| | | #endif |
| | | |
| | | list *read_data_cfg(char *filename) |
| | | { |
| | | FILE *file = fopen(filename, "r"); |
| | | if(file == 0) file_error(filename); |
| | | char *line; |
| | | int nu = 0; |
| | | list *options = make_list(); |
| | | while((line=fgetl(file)) != 0){ |
| | | ++ nu; |
| | | strip(line); |
| | | switch(line[0]){ |
| | | case '\0': |
| | | case '#': |
| | | case ';': |
| | | free(line); |
| | | break; |
| | | default: |
| | | if(!read_option(line, options)){ |
| | | fprintf(stderr, "Config file error line %d, could parse: %s\n", nu, line); |
| | | free(line); |
| | | } |
| | | break; |
| | | } |
| | | } |
| | | fclose(file); |
| | | return options; |
| | | } |
| | | image get_image_from_stream(CvCapture *cap); |
| | | image get_image_from_stream_cpp(CvCapture *cap); |
| | | #include "http_stream.h" |
| | | #endif |
| | | |
| | | float *get_regression_values(char **labels, int n) |
| | | { |
| | |
| | | return v; |
| | | } |
| | | |
| | | void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear) |
| | | void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) |
| | | { |
| | | int nthreads = 8; |
| | | int i; |
| | | |
| | | data_seed = time(0); |
| | | srand(time(0)); |
| | | float avg_loss = -1; |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | if(clear) *net.seen = 0; |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | int imgs = net.batch*net.subdivisions/nthreads; |
| | | assert(net.batch*net.subdivisions % nthreads == 0); |
| | | printf("%d\n", ngpus); |
| | | network *nets = calloc(ngpus, sizeof(network)); |
| | | |
| | | srand(time(0)); |
| | | int seed = rand(); |
| | | for(i = 0; i < ngpus; ++i){ |
| | | srand(seed); |
| | | #ifdef GPU |
| | | cuda_set_device(gpus[i]); |
| | | #endif |
| | | nets[i] = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&nets[i], weightfile); |
| | | } |
| | | if(clear) *nets[i].seen = 0; |
| | | nets[i].learning_rate *= ngpus; |
| | | } |
| | | srand(time(0)); |
| | | network net = nets[0]; |
| | | |
| | | int imgs = net.batch * net.subdivisions * ngpus; |
| | | |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | char *backup_directory = option_find_str(options, "backup", "/backup/"); |
| | |
| | | int N = plist->size; |
| | | clock_t time; |
| | | |
| | | pthread_t *load_threads = calloc(nthreads, sizeof(pthread_t)); |
| | | data *trains = calloc(nthreads, sizeof(data)); |
| | | data *buffers = calloc(nthreads, sizeof(data)); |
| | | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.threads = 32; |
| | | args.hierarchy = net.hierarchy; |
| | | |
| | | args.min = net.min_crop; |
| | | args.max = net.max_crop; |
| | | args.flip = net.flip; |
| | | args.angle = net.angle; |
| | | args.aspect = net.aspect; |
| | | args.exposure = net.exposure; |
| | |
| | | args.labels = labels; |
| | | args.type = CLASSIFICATION_DATA; |
| | | |
| | | for(i = 0; i < nthreads; ++i){ |
| | | args.d = buffers + i; |
| | | load_threads[i] = load_data_in_thread(args); |
| | | } |
| | | data train; |
| | | data buffer; |
| | | pthread_t load_thread; |
| | | args.d = &buffer; |
| | | load_thread = load_data(args); |
| | | |
| | | int epoch = (*net.seen)/N; |
| | | while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ |
| | | time=clock(); |
| | | for(i = 0; i < nthreads; ++i){ |
| | | pthread_join(load_threads[i], 0); |
| | | trains[i] = buffers[i]; |
| | | } |
| | | data train = concat_datas(trains, nthreads); |
| | | |
| | | for(i = 0; i < nthreads; ++i){ |
| | | args.d = buffers + i; |
| | | load_threads[i] = load_data_in_thread(args); |
| | | } |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | load_thread = load_data(args); |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | |
| | | #ifdef OPENCV |
| | | if(0){ |
| | | int u; |
| | | for(u = 0; u < imgs; ++u){ |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[u]); |
| | | show_image(im, "loaded"); |
| | | cvWaitKey(0); |
| | | } |
| | | float loss = 0; |
| | | #ifdef GPU |
| | | if(ngpus == 1){ |
| | | loss = train_network(net, train); |
| | | } else { |
| | | loss = train_networks(nets, ngpus, train, 4); |
| | | } |
| | | #endif |
| | | |
| | | float loss = train_network(net, train); |
| | | #else |
| | | loss = train_network(net, train); |
| | | #endif |
| | | if(avg_loss == -1) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); |
| | | free_data(train); |
| | | for(i = 0; i < nthreads; ++i){ |
| | | free_data(trains[i]); |
| | | } |
| | | if(*net.seen/N > epoch){ |
| | | epoch = *net.seen/N; |
| | | char buff[256]; |
| | |
| | | sprintf(buff, "%s/%s.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | |
| | | for(i = 0; i < nthreads; ++i){ |
| | | pthread_join(load_threads[i], 0); |
| | | free_data(buffers[i]); |
| | | } |
| | | free(buffers); |
| | | free(trains); |
| | | free(load_threads); |
| | | |
| | | free_network(net); |
| | | free_ptrs((void**)labels, classes); |
| | | free_ptrs((void**)paths, plist->size); |
| | |
| | | free(base); |
| | | } |
| | | |
| | | |
| | | /* |
| | | void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int clear) |
| | | { |
| | | srand(time(0)); |
| | | float avg_loss = -1; |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | if(clear) *net.seen = 0; |
| | | |
| | | int imgs = net.batch * net.subdivisions; |
| | | |
| | | printf("Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | char *backup_directory = option_find_str(options, "backup", "/backup/"); |
| | | char *label_list = option_find_str(options, "labels", "data/labels.list"); |
| | | char *train_list = option_find_str(options, "train", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(train_list); |
| | | char **paths = (char **)list_to_array(plist); |
| | | printf("%d\n", plist->size); |
| | | int N = plist->size; |
| | | clock_t time; |
| | | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.threads = 8; |
| | | |
| | | args.min = net.min_crop; |
| | | args.max = net.max_crop; |
| | | args.flip = net.flip; |
| | | args.angle = net.angle; |
| | | args.aspect = net.aspect; |
| | | args.exposure = net.exposure; |
| | | args.saturation = net.saturation; |
| | | args.hue = net.hue; |
| | | args.size = net.w; |
| | | args.hierarchy = net.hierarchy; |
| | | |
| | | args.paths = paths; |
| | | args.classes = classes; |
| | | args.n = imgs; |
| | | args.m = N; |
| | | args.labels = labels; |
| | | args.type = CLASSIFICATION_DATA; |
| | | |
| | | data train; |
| | | data buffer; |
| | | pthread_t load_thread; |
| | | args.d = &buffer; |
| | | load_thread = load_data(args); |
| | | |
| | | int epoch = (*net.seen)/N; |
| | | while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ |
| | | time=clock(); |
| | | |
| | | pthread_join(load_thread, 0); |
| | | train = buffer; |
| | | load_thread = load_data(args); |
| | | |
| | | printf("Loaded: %lf seconds\n", sec(clock()-time)); |
| | | time=clock(); |
| | | |
| | | #ifdef OPENCV |
| | | if(0){ |
| | | int u; |
| | | for(u = 0; u < imgs; ++u){ |
| | | image im = float_to_image(net.w, net.h, 3, train.X.vals[u]); |
| | | show_image(im, "loaded"); |
| | | cvWaitKey(0); |
| | | } |
| | | } |
| | | #endif |
| | | |
| | | float loss = train_network(net, train); |
| | | free_data(train); |
| | | |
| | | if(avg_loss == -1) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); |
| | | if(*net.seen/N > epoch){ |
| | | epoch = *net.seen/N; |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); |
| | | save_weights(net, buff); |
| | | } |
| | | if(get_current_batch(net)%100 == 0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.backup",backup_directory,base); |
| | | save_weights(net, buff); |
| | | } |
| | | } |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | |
| | | free_network(net); |
| | | free_ptrs((void**)labels, classes); |
| | | free_ptrs((void**)paths, plist->size); |
| | | free_list(plist); |
| | | free(base); |
| | | } |
| | | */ |
| | | |
| | | void validate_classifier_crop(char *datacfg, char *filename, char *weightfile) |
| | | { |
| | | int i = 0; |
| | |
| | | int *indexes = calloc(topk, sizeof(int)); |
| | | |
| | | for(i = 0; i < m; ++i){ |
| | | int class = -1; |
| | | int class_id = -1; |
| | | char *path = paths[i]; |
| | | for(j = 0; j < classes; ++j){ |
| | | if(strstr(path, labels[j])){ |
| | | class = j; |
| | | class_id = j; |
| | | break; |
| | | } |
| | | } |
| | |
| | | float *pred = calloc(classes, sizeof(float)); |
| | | for(j = 0; j < 10; ++j){ |
| | | float *p = network_predict(net, images[j].data); |
| | | if(net.hierarchy) hierarchy_predictions(p, net.outputs, net.hierarchy, 1); |
| | | axpy_cpu(classes, 1, p, 1, pred, 1); |
| | | free_image(images[j]); |
| | | } |
| | | free_image(im); |
| | | top_k(pred, classes, topk, indexes); |
| | | free(pred); |
| | | if(indexes[0] == class) avg_acc += 1; |
| | | if(indexes[0] == class_id) avg_acc += 1; |
| | | for(j = 0; j < topk; ++j){ |
| | | if(indexes[j] == class) avg_topk += 1; |
| | | if(indexes[j] == class_id) avg_topk += 1; |
| | | } |
| | | |
| | | printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); |
| | |
| | | |
| | | int size = net.w; |
| | | for(i = 0; i < m; ++i){ |
| | | int class = -1; |
| | | int class_id = -1; |
| | | char *path = paths[i]; |
| | | for(j = 0; j < classes; ++j){ |
| | | if(strstr(path, labels[j])){ |
| | | class = j; |
| | | class_id = j; |
| | | break; |
| | | } |
| | | } |
| | |
| | | //show_image(crop, "cropped"); |
| | | //cvWaitKey(0); |
| | | float *pred = network_predict(net, resized.data); |
| | | if(net.hierarchy) hierarchy_predictions(pred, net.outputs, net.hierarchy, 1); |
| | | |
| | | free_image(im); |
| | | free_image(resized); |
| | | top_k(pred, classes, topk, indexes); |
| | | |
| | | if(indexes[0] == class) avg_acc += 1; |
| | | if(indexes[0] == class_id) avg_acc += 1; |
| | | for(j = 0; j < topk; ++j){ |
| | | if(indexes[j] == class) avg_topk += 1; |
| | | if(indexes[j] == class_id) avg_topk += 1; |
| | | } |
| | | |
| | | printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); |
| | |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | char *label_list = option_find_str(options, "labels", "data/labels.list"); |
| | | char *leaf_list = option_find_str(options, "leaves", 0); |
| | | if(leaf_list) change_leaves(net.hierarchy, leaf_list); |
| | | char *valid_list = option_find_str(options, "valid", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int topk = option_find_int(options, "top", 1); |
| | |
| | | int *indexes = calloc(topk, sizeof(int)); |
| | | |
| | | for(i = 0; i < m; ++i){ |
| | | int class = -1; |
| | | int class_id = -1; |
| | | char *path = paths[i]; |
| | | for(j = 0; j < classes; ++j){ |
| | | if(strstr(path, labels[j])){ |
| | | class = j; |
| | | class_id = j; |
| | | break; |
| | | } |
| | | } |
| | |
| | | //show_image(crop, "cropped"); |
| | | //cvWaitKey(0); |
| | | float *pred = network_predict(net, crop.data); |
| | | if(net.hierarchy) hierarchy_predictions(pred, net.outputs, net.hierarchy, 1); |
| | | |
| | | if(resized.data != im.data) free_image(resized); |
| | | free_image(im); |
| | | free_image(crop); |
| | | top_k(pred, classes, topk, indexes); |
| | | |
| | | if(indexes[0] == class) avg_acc += 1; |
| | | if(indexes[0] == class_id) avg_acc += 1; |
| | | for(j = 0; j < topk; ++j){ |
| | | if(indexes[j] == class) avg_topk += 1; |
| | | if(indexes[j] == class_id) avg_topk += 1; |
| | | } |
| | | |
| | | printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); |
| | |
| | | int *indexes = calloc(topk, sizeof(int)); |
| | | |
| | | for(i = 0; i < m; ++i){ |
| | | int class = -1; |
| | | int class_id = -1; |
| | | char *path = paths[i]; |
| | | for(j = 0; j < classes; ++j){ |
| | | if(strstr(path, labels[j])){ |
| | | class = j; |
| | | class_id = j; |
| | | break; |
| | | } |
| | | } |
| | |
| | | image r = resize_min(im, scales[j]); |
| | | resize_network(&net, r.w, r.h); |
| | | float *p = network_predict(net, r.data); |
| | | if(net.hierarchy) hierarchy_predictions(p, net.outputs, net.hierarchy, 1); |
| | | axpy_cpu(classes, 1, p, 1, pred, 1); |
| | | flip_image(r); |
| | | p = network_predict(net, r.data); |
| | |
| | | free_image(im); |
| | | top_k(pred, classes, topk, indexes); |
| | | free(pred); |
| | | if(indexes[0] == class) avg_acc += 1; |
| | | if(indexes[0] == class_id) avg_acc += 1; |
| | | for(j = 0; j < topk; ++j){ |
| | | if(indexes[j] == class) avg_topk += 1; |
| | | if(indexes[j] == class_id) avg_topk += 1; |
| | | } |
| | | |
| | | printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1)); |
| | |
| | | |
| | | void try_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int layer_num) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | network net = parse_network_cfg_custom(cfgfile, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | |
| | | float *X = im.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | |
| | | |
| | | layer l = net.layers[layer_num]; |
| | | for(i = 0; i < l.c; ++i){ |
| | | if(l.rolling_mean) printf("%f %f %f\n", l.rolling_mean[i], l.rolling_variance[i], l.scales[i]); |
| | | if(l.rolling_mean) printf("%f %f %f\n", l.rolling_mean[i], l.rolling_variance[i], l.scales[i]); |
| | | } |
| | | #ifdef GPU |
| | | #ifdef GPU |
| | | cuda_pull_array(l.output_gpu, l.output, l.outputs); |
| | | #endif |
| | | #endif |
| | | for(i = 0; i < l.outputs; ++i){ |
| | | printf("%f\n", l.output[i]); |
| | | } |
| | | /* |
| | | |
| | | printf("\n\nWeights\n"); |
| | | for(i = 0; i < l.n*l.size*l.size*l.c; ++i){ |
| | | printf("%f\n", l.filters[i]); |
| | | } |
| | | |
| | | printf("\n\nBiases\n"); |
| | | for(i = 0; i < l.n; ++i){ |
| | | printf("%f\n", l.biases[i]); |
| | | } |
| | | */ |
| | | printf("\n\nWeights\n"); |
| | | for(i = 0; i < l.n*l.size*l.size*l.c; ++i){ |
| | | printf("%f\n", l.filters[i]); |
| | | } |
| | | |
| | | printf("\n\nBiases\n"); |
| | | for(i = 0; i < l.n; ++i){ |
| | | printf("%f\n", l.biases[i]); |
| | | } |
| | | */ |
| | | |
| | | top_predictions(net, top, indexes); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | |
| | | } |
| | | } |
| | | |
| | | |
| | | void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename) |
| | | void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | network net = parse_network_cfg_custom(cfgfile, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | |
| | | |
| | | char *name_list = option_find_str(options, "names", 0); |
| | | if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list"); |
| | | int top = option_find_int(options, "top", 1); |
| | | if(top == 0) top = option_find_int(options, "top", 1); |
| | | |
| | | int i = 0; |
| | | char **names = get_labels(name_list); |
| | |
| | | strtok(input, "\n"); |
| | | } |
| | | image im = load_image_color(input, 0, 0); |
| | | image r = resize_min(im, size); |
| | | resize_network(&net, r.w, r.h); |
| | | image r = letterbox_image(im, net.w, net.h); |
| | | //image r = resize_min(im, size); |
| | | //resize_network(&net, r.w, r.h); |
| | | printf("%d %d\n", r.w, r.h); |
| | | |
| | | float *X = r.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | top_predictions(net, top, indexes); |
| | | if(net.hierarchy) hierarchy_predictions(predictions, net.outputs, net.hierarchy, 0); |
| | | top_k(predictions, net.outputs, top, indexes); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | for(i = 0; i < top; ++i){ |
| | | int index = indexes[i]; |
| | | printf("%s: %f\n", names[index], predictions[index]); |
| | | if(net.hierarchy) printf("%d, %s: %f, parent: %s \n",index, names[index], predictions[index], (net.hierarchy->parent[index] >= 0) ? names[net.hierarchy->parent[index]] : "Root"); |
| | | else printf("%s: %f\n",names[index], predictions[index]); |
| | | } |
| | | if(r.data != im.data) free_image(r); |
| | | free_image(im); |
| | |
| | | srand(2222222); |
| | | CvCapture * cap; |
| | | |
| | | if(filename){ |
| | | cap = cvCaptureFromFile(filename); |
| | | }else{ |
| | | cap = cvCaptureFromCAM(cam_index); |
| | | } |
| | | if (filename) { |
| | | //cap = cvCaptureFromFile(filename); |
| | | cap = get_capture_video_stream(filename); |
| | | } |
| | | else { |
| | | //cap = cvCaptureFromCAM(cam_index); |
| | | cap = get_capture_webcam(cam_index); |
| | | } |
| | | |
| | | int top = option_find_int(options, "top", 1); |
| | | |
| | |
| | | struct timeval tval_before, tval_after, tval_result; |
| | | gettimeofday(&tval_before, NULL); |
| | | |
| | | image in = get_image_from_stream(cap); |
| | | //image in = get_image_from_stream(cap); |
| | | image in = get_image_from_stream_cpp(cap); |
| | | if(!in.data) break; |
| | | image in_s = resize_image(in, net.w, net.h); |
| | | |
| | | image out = in; |
| | | int x1 = out.w / 20; |
| | | int y1 = out.h / 20; |
| | | int x2 = 2*x1; |
| | | int y2 = out.h - out.h/20; |
| | | image out = in; |
| | | int x1 = out.w / 20; |
| | | int y1 = out.h / 20; |
| | | int x2 = 2*x1; |
| | | int y2 = out.h - out.h/20; |
| | | |
| | | int border = .01*out.h; |
| | | int h = y2 - y1 - 2*border; |
| | | int w = x2 - x1 - 2*border; |
| | | int border = .01*out.h; |
| | | int h = y2 - y1 - 2*border; |
| | | int w = x2 - x1 - 2*border; |
| | | |
| | | float *predictions = network_predict(net, in_s.data); |
| | | float curr_threat = predictions[0] * 0 + predictions[1] * .6 + predictions[2]; |
| | | float curr_threat = 0; |
| | | if(1){ |
| | | curr_threat = predictions[0] * 0 + |
| | | predictions[1] * .6 + |
| | | predictions[2]; |
| | | } else { |
| | | curr_threat = predictions[218] + |
| | | predictions[539] + |
| | | predictions[540] + |
| | | predictions[368] + |
| | | predictions[369] + |
| | | predictions[370]; |
| | | } |
| | | threat = roll * curr_threat + (1-roll) * threat; |
| | | |
| | | draw_box_width(out, x2 + border, y1 + .02*h, x2 + .5 * w, y1 + .02*h + border, border, 0,0,0); |
| | |
| | | y1 + .02*h + 3*border, .5*border, 0,0,0); |
| | | draw_box_width(out, x2 + border, y1 + .42*h, x2 + .5 * w, y1 + .42*h + border, border, 0,0,0); |
| | | if(threat > .57) { |
| | | draw_box_width(out, x2 + .5 * w + border, |
| | | y1 + .42*h - 2*border, |
| | | x2 + .5 * w + 6*border, |
| | | y1 + .42*h + 3*border, 3*border, 1,1,0); |
| | | } |
| | | draw_box_width(out, x2 + .5 * w + border, |
| | | y1 + .42*h - 2*border, |
| | | x2 + .5 * w + 6*border, |
| | | y1 + .42*h + 3*border, 3*border, 1,1,0); |
| | | } |
| | | draw_box_width(out, x2 + .5 * w + border, |
| | | y1 + .42*h - 2*border, |
| | | x2 + .5 * w + 6*border, |
| | |
| | | top_predictions(net, top, indexes); |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/tmp/threat_%06d", count); |
| | | save_image(out, buff); |
| | | //save_image(out, buff); |
| | | |
| | | printf("\033[2J"); |
| | | printf("\033[1;1H"); |
| | |
| | | printf("%.1f%%: %s\n", predictions[index]*100, names[index]); |
| | | } |
| | | |
| | | if(0){ |
| | | if(1){ |
| | | show_image(out, "Threat"); |
| | | cvWaitKey(10); |
| | | } |
| | |
| | | } |
| | | |
| | | |
| | | void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename) |
| | | void gun_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename) |
| | | { |
| | | #ifdef OPENCV |
| | | int bad_cats[] = {218, 539, 540, 1213, 1501, 1742, 1911, 2415, 4348, 19223, 368, 369, 370, 1133, 1200, 1306, 2122, 2301, 2537, 2823, 3179, 3596, 3639, 4489, 5107, 5140, 5289, 6240, 6631, 6762, 7048, 7171, 7969, 7984, 7989, 8824, 8927, 9915, 10270, 10448, 13401, 15205, 18358, 18894, 18895, 19249, 19697}; |
| | | |
| | | printf("Classifier Demo\n"); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | |
| | | srand(2222222); |
| | | CvCapture * cap; |
| | | |
| | | if (filename) { |
| | | //cap = cvCaptureFromFile(filename); |
| | | cap = get_capture_video_stream(filename); |
| | | } |
| | | else { |
| | | //cap = cvCaptureFromCAM(cam_index); |
| | | cap = get_capture_webcam(cam_index); |
| | | } |
| | | |
| | | int top = option_find_int(options, "top", 1); |
| | | |
| | | char *name_list = option_find_str(options, "names", 0); |
| | | char **names = get_labels(name_list); |
| | | |
| | | int *indexes = calloc(top, sizeof(int)); |
| | | |
| | | if(!cap) error("Couldn't connect to webcam.\n"); |
| | | cvNamedWindow("Threat Detection", CV_WINDOW_NORMAL); |
| | | cvResizeWindow("Threat Detection", 512, 512); |
| | | float fps = 0; |
| | | int i; |
| | | |
| | | while(1){ |
| | | struct timeval tval_before, tval_after, tval_result; |
| | | gettimeofday(&tval_before, NULL); |
| | | |
| | | //image in = get_image_from_stream(cap); |
| | | image in = get_image_from_stream_cpp(cap); |
| | | image in_s = resize_image(in, net.w, net.h); |
| | | show_image(in, "Threat Detection"); |
| | | |
| | | float *predictions = network_predict(net, in_s.data); |
| | | top_predictions(net, top, indexes); |
| | | |
| | | printf("\033[2J"); |
| | | printf("\033[1;1H"); |
| | | |
| | | int threat = 0; |
| | | for(i = 0; i < sizeof(bad_cats)/sizeof(bad_cats[0]); ++i){ |
| | | int index = bad_cats[i]; |
| | | if(predictions[index] > .01){ |
| | | printf("Threat Detected!\n"); |
| | | threat = 1; |
| | | break; |
| | | } |
| | | } |
| | | if(!threat) printf("Scanning...\n"); |
| | | for(i = 0; i < sizeof(bad_cats)/sizeof(bad_cats[0]); ++i){ |
| | | int index = bad_cats[i]; |
| | | if(predictions[index] > .01){ |
| | | printf("%s\n", names[index]); |
| | | } |
| | | } |
| | | |
| | | free_image(in_s); |
| | | free_image(in); |
| | | |
| | | cvWaitKey(10); |
| | | |
| | | gettimeofday(&tval_after, NULL); |
| | | timersub(&tval_after, &tval_before, &tval_result); |
| | | float curr = 1000000.f/((long int)tval_result.tv_usec); |
| | | fps = .9*fps + .1*curr; |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | void demo_classifier(char *datacfg, char *cfgfile, char *weightfile, int cam_index, const char *filename) |
| | | { |
| | | #ifdef OPENCV |
| | | printf("Classifier Demo\n"); |
| | | network net = parse_network_cfg_custom(cfgfile, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | srand(2222222); |
| | | CvCapture * cap; |
| | | |
| | | if(filename){ |
| | | cap = cvCaptureFromFile(filename); |
| | | //cap = cvCaptureFromFile(filename); |
| | | cap = get_capture_video_stream(filename); |
| | | }else{ |
| | | cap = cvCaptureFromCAM(cam_index); |
| | | //cap = cvCaptureFromCAM(cam_index); |
| | | cap = get_capture_webcam(cam_index); |
| | | } |
| | | |
| | | int top = option_find_int(options, "top", 1); |
| | |
| | | struct timeval tval_before, tval_after, tval_result; |
| | | gettimeofday(&tval_before, NULL); |
| | | |
| | | image in = get_image_from_stream(cap); |
| | | //image in = get_image_from_stream(cap); |
| | | image in = get_image_from_stream_cpp(cap); |
| | | image in_s = resize_image(in, net.w, net.h); |
| | | show_image(in, "Classifier"); |
| | | |
| | | float *predictions = network_predict(net, in_s.data); |
| | | if(net.hierarchy) hierarchy_predictions(predictions, net.outputs, net.hierarchy, 1); |
| | | top_predictions(net, top, indexes); |
| | | |
| | | printf("\033[2J"); |
| | |
| | | return; |
| | | } |
| | | |
| | | char *gpu_list = find_char_arg(argc, argv, "-gpus", 0); |
| | | int *gpus = 0; |
| | | int gpu = 0; |
| | | int ngpus = 0; |
| | | if(gpu_list){ |
| | | printf("%s\n", gpu_list); |
| | | int len = strlen(gpu_list); |
| | | ngpus = 1; |
| | | int i; |
| | | for(i = 0; i < len; ++i){ |
| | | if (gpu_list[i] == ',') ++ngpus; |
| | | } |
| | | gpus = calloc(ngpus, sizeof(int)); |
| | | for(i = 0; i < ngpus; ++i){ |
| | | gpus[i] = atoi(gpu_list); |
| | | gpu_list = strchr(gpu_list, ',')+1; |
| | | } |
| | | } else { |
| | | gpu = gpu_index; |
| | | gpus = &gpu; |
| | | ngpus = 1; |
| | | } |
| | | |
| | | int cam_index = find_int_arg(argc, argv, "-c", 0); |
| | | int top = find_int_arg(argc, argv, "-t", 0); |
| | | int clear = find_arg(argc, argv, "-clear"); |
| | | char *data = argv[3]; |
| | | char *cfg = argv[4]; |
| | |
| | | char *filename = (argc > 6) ? argv[6]: 0; |
| | | char *layer_s = (argc > 7) ? argv[7]: 0; |
| | | int layer = layer_s ? atoi(layer_s) : -1; |
| | | if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename); |
| | | if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename, top); |
| | | else if(0==strcmp(argv[2], "try")) try_classifier(data, cfg, weights, filename, atoi(layer_s)); |
| | | else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, clear); |
| | | else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, gpus, ngpus, clear); |
| | | else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename); |
| | | else if(0==strcmp(argv[2], "gun")) gun_classifier(data, cfg, weights, cam_index, filename); |
| | | else if(0==strcmp(argv[2], "threat")) threat_classifier(data, cfg, weights, cam_index, filename); |
| | | else if(0==strcmp(argv[2], "test")) test_classifier(data, cfg, weights, layer); |
| | | else if(0==strcmp(argv[2], "label")) label_classifier(data, cfg, weights); |