| | |
| | | This repository supports: |
| | | |
| | | * both Windows and Linux |
| | | * both OpenCV 3.x and OpenCV 2.4.13 |
| | | * both OpenCV 2.x.x and OpenCV <= 3.4.0 (3.4.1 and higher isn't supported) |
| | | * both cuDNN v5-v7 |
| | | * CUDA >= 7.5 |
| | | * also create SO-library on Linux and DLL-library on Windows |
| | |
| | | ##### Requires: |
| | | * **Linux GCC>=4.9 or Windows MS Visual Studio 2015 (v140)**: https://go.microsoft.com/fwlink/?LinkId=532606&clcid=0x409 (or offline [ISO image](https://go.microsoft.com/fwlink/?LinkId=615448&clcid=0x409)) |
| | | * **CUDA 9.1**: https://developer.nvidia.com/cuda-downloads |
| | | * **OpenCV 3.x**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.2.0/opencv-3.2.0-vc14.exe/download |
| | | * **OpenCV 3.4.0**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/3.4.0/opencv-3.4.0-vc14_vc15.exe/download |
| | | * **or OpenCV 2.4.13**: https://sourceforge.net/projects/opencvlibrary/files/opencv-win/2.4.13/opencv-2.4.13.2-vc14.exe/download |
| | | - OpenCV allows to show image or video detection in the window and store result to file that specified in command line `-out_filename res.avi` |
| | | * **GPU with CC >= 2.0** if you use CUDA, or **GPU CC >= 3.0** if you use cuDNN + CUDA: https://en.wikipedia.org/wiki/CUDA#GPUs_supported |
| | |
| | | |
| | | 6. Set `batch=64` and `subdivisions=8` in the file `yolo-voc.2.0.cfg`: [link](https://github.com/AlexeyAB/darknet/blob/master/build/darknet/x64/yolo-voc.2.0.cfg#L2) |
| | | |
| | | 7. Start training by using `train_voc.cmd` or by using the command line: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23` (**Note:** If you are using CPU, try `darknet_no_gpu.exe` instead of `darknet.exe`.) |
| | | 7. Start training by using `train_voc.cmd` or by using the command line: `darknet.exe detector train data/voc.data yolo-voc.2.0.cfg darknet19_448.conv.23` (**Note:** To disable Loss-Window use flag `-dont_show`. If you are using CPU, try `darknet_no_gpu.exe` instead of `darknet.exe`.) |
| | | |
| | | If required change pathes in the file `build\darknet\x64\data\voc.data` |
| | | |
| | |
| | | 8. Start training by using the command line: `darknet.exe detector train data/obj.data yolo-obj.cfg darknet19_448.conv.23` |
| | | |
| | | (file `yolo-obj_xxx.weights` will be saved to the `build\darknet\x64\backup\` for each 100 iterations) |
| | | (To disable Loss-Window use `darknet.exe detector train data/obj.data yolo-obj.cfg darknet19_448.conv.23 -dont_show`, if you train on computer without monitor like a cloud Amazaon EC2) |
| | | |
| | | 9. After training is complete - get result `yolo-obj_final.weights` from path `build\darknet\x64\backup\` |
| | | |
| | |
| | | |
| | | * desirable that your training dataset include images with objects at diffrent: scales, rotations, lightings, from different sides |
| | | |
| | | * desirable that your training dataset include images with objects (without labels) that you do not want to detect - negative samples |
| | | |
| | | * for training on small objects, add the parameter `small_object=1` in the last layer [region] in your cfg-file |
| | | |
| | | * for training with a large number of objects in each image, add the parameter `max=200` or higher value in the last layer [region] in your cfg-file |