Joseph Redmon
2016-02-29 16d06ec0db241261d0d030722e440206ed8aad77
src/classifier.c
@@ -70,6 +70,11 @@
    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.min = net.w;
    args.max = net.max_crop;
    args.size = net.w;
    args.paths = paths;
    args.classes = classes;
    args.n = imgs;
@@ -88,6 +93,16 @@
        load_thread = load_data_in_thread(args);
        printf("Loaded: %lf seconds\n", sec(clock()-time));
        time=clock();
/*
        int u;
        for(u = 0; u < net.batch; ++u){
            image im = float_to_image(net.w, net.h, 3, train.X.vals[u]);
            show_image(im, "loaded");
            cvWaitKey(0);
        }
        */
        float loss = train_network(net, train);
        if(avg_loss == -1) avg_loss = loss;
        avg_loss = avg_loss*.9 + loss*.1;
@@ -99,7 +114,7 @@
            sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch);
            save_weights(net, buff);
        }
        if(*net.seen%1000 == 0){
        if(*net.seen%100 == 0){
            char buff[256];
            sprintf(buff, "%s/%s.backup",backup_directory,base);
            save_weights(net, buff);
@@ -152,13 +167,14 @@
    load_args args = {0};
    args.w = net.w;
    args.h = net.h;
    args.paths = paths;
    args.classes = classes;
    args.n = num;
    args.m = 0;
    args.labels = labels;
    args.d = &buffer;
    args.type = CLASSIFICATION_DATA;
    args.type = OLD_CLASSIFICATION_DATA;
    pthread_t load_thread = load_data_in_thread(args);
    for(i = 1; i <= splits; ++i){
@@ -221,19 +237,22 @@
                break;
            }
        }
        image im = load_image_color(paths[i], 256, 256);
        int w = net.w;
        int h = net.h;
        image im = load_image_color(paths[i], w, h);
        int shift = 32;
        image images[10];
        images[0] = crop_image(im, -16, -16, 256, 256);
        images[1] = crop_image(im, 16, -16, 256, 256);
        images[2] = crop_image(im, 0, 0, 256, 256);
        images[3] = crop_image(im, -16, 16, 256, 256);
        images[4] = crop_image(im, 16, 16, 256, 256);
        images[0] = crop_image(im, -shift, -shift, w, h);
        images[1] = crop_image(im, shift, -shift, w, h);
        images[2] = crop_image(im, 0, 0, w, h);
        images[3] = crop_image(im, -shift, shift, w, h);
        images[4] = crop_image(im, shift, shift, w, h);
        flip_image(im);
        images[5] = crop_image(im, -16, -16, 256, 256);
        images[6] = crop_image(im, 16, -16, 256, 256);
        images[7] = crop_image(im, 0, 0, 256, 256);
        images[8] = crop_image(im, -16, 16, 256, 256);
        images[9] = crop_image(im, 16, 16, 256, 256);
        images[5] = crop_image(im, -shift, -shift, w, h);
        images[6] = crop_image(im, shift, -shift, w, h);
        images[7] = crop_image(im, 0, 0, w, h);
        images[8] = crop_image(im, -shift, shift, w, h);
        images[9] = crop_image(im, shift, shift, w, h);
        float *pred = calloc(classes, sizeof(float));
        for(j = 0; j < 10; ++j){
            float *p = network_predict(net, images[j].data);
@@ -252,6 +271,122 @@
    }
}
void validate_classifier_full(char *datacfg, char *filename, char *weightfile)
{
    int i, j;
    network net = parse_network_cfg(filename);
    set_batch_network(&net, 1);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    srand(time(0));
    list *options = read_data_cfg(datacfg);
    char *label_list = option_find_str(options, "labels", "data/labels.list");
    char *valid_list = option_find_str(options, "valid", "data/train.list");
    int classes = option_find_int(options, "classes", 2);
    int topk = option_find_int(options, "top", 1);
    char **labels = get_labels(label_list);
    list *plist = get_paths(valid_list);
    char **paths = (char **)list_to_array(plist);
    int m = plist->size;
    free_list(plist);
    float avg_acc = 0;
    float avg_topk = 0;
    int *indexes = calloc(topk, sizeof(int));
    for(i = 0; i < m; ++i){
        int class = -1;
        char *path = paths[i];
        for(j = 0; j < classes; ++j){
            if(strstr(path, labels[j])){
                class = j;
                break;
            }
        }
        image im = load_image_color(paths[i], 0, 0);
        resize_network(&net, im.w, im.h);
        //show_image(im, "orig");
        //show_image(crop, "cropped");
        //cvWaitKey(0);
        float *pred = network_predict(net, im.data);
        free_image(im);
        top_k(pred, classes, topk, indexes);
        if(indexes[0] == class) avg_acc += 1;
        for(j = 0; j < topk; ++j){
            if(indexes[j] == class) avg_topk += 1;
        }
        printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
    }
}
void validate_classifier_single(char *datacfg, char *filename, char *weightfile)
{
    int i, j;
    network net = parse_network_cfg(filename);
    set_batch_network(&net, 1);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    srand(time(0));
    list *options = read_data_cfg(datacfg);
    char *label_list = option_find_str(options, "labels", "data/labels.list");
    char *valid_list = option_find_str(options, "valid", "data/train.list");
    int classes = option_find_int(options, "classes", 2);
    int topk = option_find_int(options, "top", 1);
    char **labels = get_labels(label_list);
    list *plist = get_paths(valid_list);
    char **paths = (char **)list_to_array(plist);
    int m = plist->size;
    free_list(plist);
    float avg_acc = 0;
    float avg_topk = 0;
    int *indexes = calloc(topk, sizeof(int));
    for(i = 0; i < m; ++i){
        int class = -1;
        char *path = paths[i];
        for(j = 0; j < classes; ++j){
            if(strstr(path, labels[j])){
                class = j;
                break;
            }
        }
        image im = load_image_color(paths[i], 0, 0);
        image resized = resize_min(im, net.w);
        image crop = crop_image(resized, (resized.w - net.w)/2, (resized.h - net.h)/2, net.w, net.h);
        //show_image(im, "orig");
        //show_image(crop, "cropped");
        //cvWaitKey(0);
        float *pred = network_predict(net, crop.data);
        free_image(im);
        free_image(resized);
        free_image(crop);
        top_k(pred, classes, topk, indexes);
        if(indexes[0] == class) avg_acc += 1;
        for(j = 0; j < topk; ++j){
            if(indexes[j] == class) avg_topk += 1;
        }
        printf("%d: top 1: %f, top %d: %f\n", i, avg_acc/(i+1), topk, avg_topk/(i+1));
    }
}
void validate_classifier_multi(char *datacfg, char *filename, char *weightfile)
{
    int i, j;
@@ -271,7 +406,7 @@
    char **labels = get_labels(label_list);
    list *plist = get_paths(valid_list);
    int scales[] = {224, 256, 384, 480, 640};
    int scales[] = {224, 256, 384, 480, 512};
    int nscales = sizeof(scales)/sizeof(scales[0]);
    char **paths = (char **)list_to_array(plist);
@@ -402,7 +537,7 @@
    args.m = 0;
    args.labels = 0;
    args.d = &buffer;
    args.type = CLASSIFICATION_DATA;
    args.type = OLD_CLASSIFICATION_DATA;
    pthread_t load_thread = load_data_in_thread(args);
    for(curr = net.batch; curr < m; curr += net.batch){
@@ -420,7 +555,7 @@
        time=clock();
        matrix pred = network_predict_data(net, val);
        int i, j;
        if (target_layer >= 0){
            //layer l = net.layers[target_layer];
@@ -461,6 +596,8 @@
    else if(0==strcmp(argv[2], "valid")) validate_classifier(data, cfg, weights);
    else if(0==strcmp(argv[2], "valid10")) validate_classifier_10(data, cfg, weights);
    else if(0==strcmp(argv[2], "validmulti")) validate_classifier_multi(data, cfg, weights);
    else if(0==strcmp(argv[2], "validsingle")) validate_classifier_single(data, cfg, weights);
    else if(0==strcmp(argv[2], "validfull")) validate_classifier_full(data, cfg, weights);
}