| | |
| | | #include "crop_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "activation_layer.h" |
| | | #include "normalization_layer.h" |
| | | #include "deconvolutional_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "rnn_layer.h" |
| | | #include "crnn_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | | #include "detection_layer.h" |
| | | #include "avgpool_layer.h" |
| | | #include "local_layer.h" |
| | | #include "route_layer.h" |
| | | #include "shortcut_layer.h" |
| | | #include "list.h" |
| | | #include "option_list.h" |
| | | #include "utils.h" |
| | |
| | | |
| | | int is_network(section *s); |
| | | int is_convolutional(section *s); |
| | | int is_activation(section *s); |
| | | int is_local(section *s); |
| | | int is_deconvolutional(section *s); |
| | | int is_connected(section *s); |
| | | int is_rnn(section *s); |
| | | int is_crnn(section *s); |
| | | int is_maxpool(section *s); |
| | | int is_avgpool(section *s); |
| | | int is_dropout(section *s); |
| | | int is_softmax(section *s); |
| | | int is_normalization(section *s); |
| | | int is_crop(section *s); |
| | | int is_shortcut(section *s); |
| | | int is_cost(section *s); |
| | | int is_detection(section *s); |
| | | int is_route(section *s); |
| | |
| | | int h; |
| | | int w; |
| | | int c; |
| | | int index; |
| | | int time_steps; |
| | | } size_params; |
| | | |
| | | deconvolutional_layer parse_deconvolutional(list *options, size_params params) |
| | |
| | | return layer; |
| | | } |
| | | |
| | | local_layer parse_local(list *options, size_params params) |
| | | { |
| | | int n = option_find_int(options, "filters",1); |
| | | int size = option_find_int(options, "size",1); |
| | | int stride = option_find_int(options, "stride",1); |
| | | int pad = option_find_int(options, "pad",0); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | |
| | | int batch,h,w,c; |
| | | h = params.h; |
| | | w = params.w; |
| | | c = params.c; |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before local layer must output image."); |
| | | |
| | | local_layer layer = make_local_layer(batch,h,w,c,n,size,stride,pad,activation); |
| | | |
| | | return layer; |
| | | } |
| | | |
| | | convolutional_layer parse_convolutional(list *options, size_params params) |
| | | { |
| | | int n = option_find_int(options, "filters",1); |
| | |
| | | batch=params.batch; |
| | | if(!(h && w && c)) error("Layer before convolutional layer must output image."); |
| | | int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
| | | int binary = option_find_int_quiet(options, "binary", 0); |
| | | |
| | | convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize); |
| | | convolutional_layer layer = make_convolutional_layer(batch,h,w,c,n,size,stride,pad,activation, batch_normalize, binary); |
| | | layer.flipped = option_find_int_quiet(options, "flipped", 0); |
| | | |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | |
| | | return layer; |
| | | } |
| | | |
| | | layer parse_crnn(list *options, size_params params) |
| | | { |
| | | int output_filters = option_find_int(options, "output_filters",1); |
| | | int hidden_filters = option_find_int(options, "hidden_filters",1); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
| | | |
| | | layer l = make_crnn_layer(params.batch, params.w, params.h, params.c, hidden_filters, output_filters, params.time_steps, activation, batch_normalize); |
| | | |
| | | l.shortcut = option_find_int_quiet(options, "shortcut", 0); |
| | | |
| | | return l; |
| | | } |
| | | |
| | | layer parse_rnn(list *options, size_params params) |
| | | { |
| | | int output = option_find_int(options, "output",1); |
| | | int hidden = option_find_int(options, "hidden",1); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
| | | int logistic = option_find_int_quiet(options, "logistic", 0); |
| | | |
| | | layer l = make_rnn_layer(params.batch, params.inputs, hidden, output, params.time_steps, activation, batch_normalize, logistic); |
| | | |
| | | l.shortcut = option_find_int_quiet(options, "shortcut", 0); |
| | | |
| | | return l; |
| | | } |
| | | |
| | | connected_layer parse_connected(list *options, size_params params) |
| | | { |
| | | int output = option_find_int(options, "output",1); |
| | | char *activation_s = option_find_str(options, "activation", "logistic"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | int batch_normalize = option_find_int_quiet(options, "batch_normalize", 0); |
| | | |
| | | connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation); |
| | | connected_layer layer = make_connected_layer(params.batch, params.inputs, output, activation, batch_normalize); |
| | | |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | |
| | | |
| | | softmax_layer parse_softmax(list *options, size_params params) |
| | | { |
| | | int groups = option_find_int(options, "groups",1); |
| | | int groups = option_find_int_quiet(options, "groups",1); |
| | | softmax_layer layer = make_softmax_layer(params.batch, params.inputs, groups); |
| | | layer.temperature = option_find_float_quiet(options, "temperature", 1); |
| | | return layer; |
| | | } |
| | | |
| | |
| | | return l; |
| | | } |
| | | |
| | | layer parse_shortcut(list *options, size_params params, network net) |
| | | { |
| | | char *l = option_find(options, "from"); |
| | | int index = atoi(l); |
| | | if(index < 0) index = params.index + index; |
| | | |
| | | int batch = params.batch; |
| | | layer from = net.layers[index]; |
| | | |
| | | layer s = make_shortcut_layer(batch, index, params.w, params.h, params.c, from.out_w, from.out_h, from.out_c); |
| | | |
| | | char *activation_s = option_find_str(options, "activation", "linear"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | s.activation = activation; |
| | | return s; |
| | | } |
| | | |
| | | |
| | | layer parse_activation(list *options, size_params params) |
| | | { |
| | | char *activation_s = option_find_str(options, "activation", "linear"); |
| | | ACTIVATION activation = get_activation(activation_s); |
| | | |
| | | layer l = make_activation_layer(params.batch, params.inputs, activation); |
| | | |
| | | l.out_h = params.h; |
| | | l.out_w = params.w; |
| | | l.out_c = params.c; |
| | | l.h = params.h; |
| | | l.w = params.w; |
| | | l.c = params.c; |
| | | |
| | | return l; |
| | | } |
| | | |
| | | route_layer parse_route(list *options, size_params params, network net) |
| | | { |
| | | char *l = option_find(options, "layers"); |
| | |
| | | for(i = 0; i < n; ++i){ |
| | | int index = atoi(l); |
| | | l = strchr(l, ',')+1; |
| | | if(index < 0) index = params.index + index; |
| | | layers[i] = index; |
| | | sizes[i] = net.layers[index].outputs; |
| | | } |
| | | int batch = params.batch; |
| | | |
| | | route_layer layer = make_route_layer(batch, n, layers, sizes); |
| | | |
| | | |
| | | convolutional_layer first = net.layers[layers[0]]; |
| | | layer.out_w = first.out_w; |
| | | layer.out_h = first.out_h; |
| | |
| | | net->momentum = option_find_float(options, "momentum", .9); |
| | | net->decay = option_find_float(options, "decay", .0001); |
| | | int subdivs = option_find_int(options, "subdivisions",1); |
| | | net->time_steps = option_find_int_quiet(options, "time_steps",1); |
| | | net->batch /= subdivs; |
| | | net->batch *= net->time_steps; |
| | | net->subdivisions = subdivs; |
| | | |
| | | net->h = option_find_int_quiet(options, "height",0); |
| | | net->w = option_find_int_quiet(options, "width",0); |
| | | net->c = option_find_int_quiet(options, "channels",0); |
| | | net->inputs = option_find_int_quiet(options, "inputs", net->h * net->w * net->c); |
| | | net->max_crop = option_find_int_quiet(options, "max_crop",net->w*2); |
| | | |
| | | if(!net->inputs && !(net->h && net->w && net->c)) error("No input parameters supplied"); |
| | | |
| | |
| | | params.c = net.c; |
| | | params.inputs = net.inputs; |
| | | params.batch = net.batch; |
| | | params.time_steps = net.time_steps; |
| | | |
| | | n = n->next; |
| | | int count = 0; |
| | | free_section(s); |
| | | while(n){ |
| | | params.index = count; |
| | | fprintf(stderr, "%d: ", count); |
| | | s = (section *)n->val; |
| | | options = s->options; |
| | | layer l = {0}; |
| | | if(is_convolutional(s)){ |
| | | l = parse_convolutional(options, params); |
| | | }else if(is_local(s)){ |
| | | l = parse_local(options, params); |
| | | }else if(is_activation(s)){ |
| | | l = parse_activation(options, params); |
| | | }else if(is_deconvolutional(s)){ |
| | | l = parse_deconvolutional(options, params); |
| | | }else if(is_rnn(s)){ |
| | | l = parse_rnn(options, params); |
| | | }else if(is_crnn(s)){ |
| | | l = parse_crnn(options, params); |
| | | }else if(is_connected(s)){ |
| | | l = parse_connected(options, params); |
| | | }else if(is_crop(s)){ |
| | |
| | | l = parse_avgpool(options, params); |
| | | }else if(is_route(s)){ |
| | | l = parse_route(options, params, net); |
| | | }else if(is_shortcut(s)){ |
| | | l = parse_shortcut(options, params, net); |
| | | }else if(is_dropout(s)){ |
| | | l = parse_dropout(options, params); |
| | | l.output = net.layers[count-1].output; |
| | |
| | | net.layers[count] = l; |
| | | free_section(s); |
| | | n = n->next; |
| | | ++count; |
| | | if(n){ |
| | | params.h = l.out_h; |
| | | params.w = l.out_w; |
| | | params.c = l.out_c; |
| | | params.inputs = l.outputs; |
| | | } |
| | | ++count; |
| | | } |
| | | free_list(sections); |
| | | net.outputs = get_network_output_size(net); |
| | |
| | | return net; |
| | | } |
| | | |
| | | int is_shortcut(section *s) |
| | | { |
| | | return (strcmp(s->type, "[shortcut]")==0); |
| | | } |
| | | int is_crop(section *s) |
| | | { |
| | | return (strcmp(s->type, "[crop]")==0); |
| | |
| | | { |
| | | return (strcmp(s->type, "[detection]")==0); |
| | | } |
| | | int is_local(section *s) |
| | | { |
| | | return (strcmp(s->type, "[local]")==0); |
| | | } |
| | | int is_deconvolutional(section *s) |
| | | { |
| | | return (strcmp(s->type, "[deconv]")==0 |
| | |
| | | return (strcmp(s->type, "[conv]")==0 |
| | | || strcmp(s->type, "[convolutional]")==0); |
| | | } |
| | | int is_activation(section *s) |
| | | { |
| | | return (strcmp(s->type, "[activation]")==0); |
| | | } |
| | | int is_network(section *s) |
| | | { |
| | | return (strcmp(s->type, "[net]")==0 |
| | | || strcmp(s->type, "[network]")==0); |
| | | } |
| | | int is_crnn(section *s) |
| | | { |
| | | return (strcmp(s->type, "[crnn]")==0); |
| | | } |
| | | int is_rnn(section *s) |
| | | { |
| | | return (strcmp(s->type, "[rnn]")==0); |
| | | } |
| | | int is_connected(section *s) |
| | | { |
| | | return (strcmp(s->type, "[conn]")==0 |
| | |
| | | fclose(fp); |
| | | } |
| | | |
| | | void save_convolutional_weights(layer l, FILE *fp) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fwrite(l.biases, sizeof(float), l.n, fp); |
| | | if (l.batch_normalize){ |
| | | fwrite(l.scales, sizeof(float), l.n, fp); |
| | | fwrite(l.rolling_mean, sizeof(float), l.n, fp); |
| | | fwrite(l.rolling_variance, sizeof(float), l.n, fp); |
| | | } |
| | | fwrite(l.filters, sizeof(float), num, fp); |
| | | } |
| | | |
| | | void save_connected_weights(layer l, FILE *fp) |
| | | { |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_connected_layer(l); |
| | | } |
| | | #endif |
| | | fwrite(l.biases, sizeof(float), l.outputs, fp); |
| | | fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp); |
| | | if (l.batch_normalize){ |
| | | fwrite(l.scales, sizeof(float), l.outputs, fp); |
| | | fwrite(l.rolling_mean, sizeof(float), l.outputs, fp); |
| | | fwrite(l.rolling_variance, sizeof(float), l.outputs, fp); |
| | | } |
| | | } |
| | | |
| | | void save_weights_upto(network net, char *filename, int cutoff) |
| | | { |
| | | fprintf(stderr, "Saving weights to %s\n", filename); |
| | | FILE *fp = fopen(filename, "w"); |
| | | if(!fp) file_error(filename); |
| | | |
| | | fwrite(&net.learning_rate, sizeof(float), 1, fp); |
| | | fwrite(&net.momentum, sizeof(float), 1, fp); |
| | | fwrite(&net.decay, sizeof(float), 1, fp); |
| | | int major = 0; |
| | | int minor = 1; |
| | | int revision = 0; |
| | | fwrite(&major, sizeof(int), 1, fp); |
| | | fwrite(&minor, sizeof(int), 1, fp); |
| | | fwrite(&revision, sizeof(int), 1, fp); |
| | | fwrite(net.seen, sizeof(int), 1, fp); |
| | | |
| | | int i; |
| | | for(i = 0; i < net.n && i < cutoff; ++i){ |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fwrite(l.biases, sizeof(float), l.n, fp); |
| | | if (l.batch_normalize){ |
| | | fwrite(l.scales, sizeof(float), l.n, fp); |
| | | fwrite(l.rolling_mean, sizeof(float), l.n, fp); |
| | | fwrite(l.rolling_variance, sizeof(float), l.n, fp); |
| | | } |
| | | fwrite(l.filters, sizeof(float), num, fp); |
| | | save_convolutional_weights(l, fp); |
| | | } if(l.type == CONNECTED){ |
| | | save_connected_weights(l, fp); |
| | | } if(l.type == RNN){ |
| | | save_connected_weights(*(l.input_layer), fp); |
| | | save_connected_weights(*(l.self_layer), fp); |
| | | save_connected_weights(*(l.output_layer), fp); |
| | | } if(l.type == CRNN){ |
| | | save_convolutional_weights(*(l.input_layer), fp); |
| | | save_convolutional_weights(*(l.self_layer), fp); |
| | | save_convolutional_weights(*(l.output_layer), fp); |
| | | } if(l.type == LOCAL){ |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_connected_layer(l); |
| | | pull_local_layer(l); |
| | | } |
| | | #endif |
| | | int locations = l.out_w*l.out_h; |
| | | int size = l.size*l.size*l.c*l.n*locations; |
| | | fwrite(l.biases, sizeof(float), l.outputs, fp); |
| | | fwrite(l.weights, sizeof(float), l.outputs*l.inputs, fp); |
| | | fwrite(l.filters, sizeof(float), size, fp); |
| | | } |
| | | } |
| | | fclose(fp); |
| | |
| | | save_weights_upto(net, filename, net.n); |
| | | } |
| | | |
| | | void transpose_matrix(float *a, int rows, int cols) |
| | | { |
| | | float *transpose = calloc(rows*cols, sizeof(float)); |
| | | int x, y; |
| | | for(x = 0; x < rows; ++x){ |
| | | for(y = 0; y < cols; ++y){ |
| | | transpose[y*rows + x] = a[x*cols + y]; |
| | | } |
| | | } |
| | | memcpy(a, transpose, rows*cols*sizeof(float)); |
| | | free(transpose); |
| | | } |
| | | |
| | | void load_connected_weights(layer l, FILE *fp, int transpose) |
| | | { |
| | | fread(l.biases, sizeof(float), l.outputs, fp); |
| | | fread(l.weights, sizeof(float), l.outputs*l.inputs, fp); |
| | | if(transpose){ |
| | | transpose_matrix(l.weights, l.inputs, l.outputs); |
| | | } |
| | | if (l.batch_normalize && (!l.dontloadscales)){ |
| | | fread(l.scales, sizeof(float), l.outputs, fp); |
| | | fread(l.rolling_mean, sizeof(float), l.outputs, fp); |
| | | fread(l.rolling_variance, sizeof(float), l.outputs, fp); |
| | | } |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_connected_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | void load_convolutional_weights(layer l, FILE *fp) |
| | | { |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fread(l.biases, sizeof(float), l.n, fp); |
| | | if (l.batch_normalize && (!l.dontloadscales)){ |
| | | fread(l.scales, sizeof(float), l.n, fp); |
| | | fread(l.rolling_mean, sizeof(float), l.n, fp); |
| | | fread(l.rolling_variance, sizeof(float), l.n, fp); |
| | | } |
| | | fread(l.filters, sizeof(float), num, fp); |
| | | if (l.flipped) { |
| | | transpose_matrix(l.filters, l.c*l.size*l.size, l.n); |
| | | } |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | |
| | | void load_weights_upto(network *net, char *filename, int cutoff) |
| | | { |
| | | fprintf(stderr, "Loading weights from %s...", filename); |
| | | fflush(stdout); |
| | | FILE *fp = fopen(filename, "r"); |
| | | FILE *fp = fopen(filename, "rb"); |
| | | if(!fp) file_error(filename); |
| | | |
| | | float garbage; |
| | | fread(&garbage, sizeof(float), 1, fp); |
| | | fread(&garbage, sizeof(float), 1, fp); |
| | | fread(&garbage, sizeof(float), 1, fp); |
| | | int major; |
| | | int minor; |
| | | int revision; |
| | | fread(&major, sizeof(int), 1, fp); |
| | | fread(&minor, sizeof(int), 1, fp); |
| | | fread(&revision, sizeof(int), 1, fp); |
| | | fread(net->seen, sizeof(int), 1, fp); |
| | | int transpose = (major > 1000) || (minor > 1000); |
| | | |
| | | int i; |
| | | for(i = 0; i < net->n && i < cutoff; ++i){ |
| | | layer l = net->layers[i]; |
| | | if (l.dontload) continue; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | int num = l.n*l.c*l.size*l.size; |
| | | fread(l.biases, sizeof(float), l.n, fp); |
| | | if (l.batch_normalize && (!l.dontloadscales)){ |
| | | fread(l.scales, sizeof(float), l.n, fp); |
| | | fread(l.rolling_mean, sizeof(float), l.n, fp); |
| | | fread(l.rolling_variance, sizeof(float), l.n, fp); |
| | | } |
| | | fread(l.filters, sizeof(float), num, fp); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_convolutional_layer(l); |
| | | } |
| | | #endif |
| | | load_convolutional_weights(l, fp); |
| | | } |
| | | if(l.type == DECONVOLUTIONAL){ |
| | | int num = l.n*l.c*l.size*l.size; |
| | |
| | | #endif |
| | | } |
| | | if(l.type == CONNECTED){ |
| | | load_connected_weights(l, fp, transpose); |
| | | } |
| | | if(l.type == CRNN){ |
| | | load_convolutional_weights(*(l.input_layer), fp); |
| | | load_convolutional_weights(*(l.self_layer), fp); |
| | | load_convolutional_weights(*(l.output_layer), fp); |
| | | } |
| | | if(l.type == RNN){ |
| | | load_connected_weights(*(l.input_layer), fp, transpose); |
| | | load_connected_weights(*(l.self_layer), fp, transpose); |
| | | load_connected_weights(*(l.output_layer), fp, transpose); |
| | | } |
| | | if(l.type == LOCAL){ |
| | | int locations = l.out_w*l.out_h; |
| | | int size = l.size*l.size*l.c*l.n*locations; |
| | | fread(l.biases, sizeof(float), l.outputs, fp); |
| | | fread(l.weights, sizeof(float), l.outputs*l.inputs, fp); |
| | | fread(l.filters, sizeof(float), size, fp); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_connected_layer(l); |
| | | push_local_layer(l); |
| | | } |
| | | #endif |
| | | } |