| | |
| | | #include "opencv2/videoio/videoio_c.h" |
| | | #endif |
| | | image get_image_from_stream(CvCapture *cap); |
| | | image get_image_from_stream_cpp(CvCapture *cap); |
| | | #include "http_stream.h" |
| | | |
| | | IplImage* draw_train_chart(float max_img_loss, int max_batches, int number_of_lines, int img_size); |
| | | void draw_train_loss(IplImage* img, int img_size, float avg_loss, float max_img_loss, int current_batch, int max_batches); |
| | | |
| | | #endif |
| | | |
| | | float *get_regression_values(char **labels, int n) |
| | |
| | | return v; |
| | | } |
| | | |
| | | void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) |
| | | void train_classifier(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show) |
| | | { |
| | | int i; |
| | | |
| | |
| | | |
| | | args.min = net.min_crop; |
| | | args.max = net.max_crop; |
| | | args.flip = net.flip; |
| | | args.angle = net.angle; |
| | | args.aspect = net.aspect; |
| | | args.exposure = net.exposure; |
| | |
| | | args.labels = labels; |
| | | args.type = CLASSIFICATION_DATA; |
| | | |
| | | #ifdef OPENCV |
| | | args.threads = 3; |
| | | IplImage* img = NULL; |
| | | float max_img_loss = 5; |
| | | int number_of_lines = 100; |
| | | int img_size = 1000; |
| | | if (!dont_show) |
| | | img = draw_train_chart(max_img_loss, net.max_batches, number_of_lines, img_size); |
| | | #endif //OPENCV |
| | | |
| | | data train; |
| | | data buffer; |
| | | pthread_t load_thread; |
| | | args.d = &buffer; |
| | | load_thread = load_data(args); |
| | | |
| | | int epoch = (*net.seen)/N; |
| | | int iter_save = get_current_batch(net); |
| | | while(get_current_batch(net) < net.max_batches || net.max_batches == 0){ |
| | | time=clock(); |
| | | |
| | |
| | | #endif |
| | | if(avg_loss == -1) avg_loss = loss; |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | |
| | | i = get_current_batch(net); |
| | | |
| | | printf("%d, %.3f: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), (float)(*net.seen)/N, loss, avg_loss, get_current_rate(net), sec(clock()-time), *net.seen); |
| | | #ifdef OPENCV |
| | | if(!dont_show) |
| | | draw_train_loss(img, img_size, avg_loss, max_img_loss, i, net.max_batches); |
| | | #endif // OPENCV |
| | | |
| | | if (i >= (iter_save + 100)) { |
| | | iter_save = i; |
| | | #ifdef GPU |
| | | if (ngpus != 1) sync_nets(nets, ngpus, 0); |
| | | #endif |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights",backup_directory,base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | free_data(train); |
| | | if(*net.seen/N > epoch){ |
| | | epoch = *net.seen/N; |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights",backup_directory,base, epoch); |
| | | save_weights(net, buff); |
| | | } |
| | | if(get_current_batch(net)%100 == 0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.backup",backup_directory,base); |
| | | save_weights(net, buff); |
| | | } |
| | | } |
| | | #ifdef GPU |
| | | if (ngpus != 1) sync_nets(nets, ngpus, 0); |
| | | #endif |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.weights", backup_directory, base); |
| | | sprintf(buff, "%s/%s_final.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | |
| | | #ifdef OPENCV |
| | | cvReleaseImage(&img); |
| | | cvDestroyAllWindows(); |
| | | #endif |
| | | |
| | | free_network(net); |
| | | free_ptrs((void**)labels, classes); |
| | | free_ptrs((void**)paths, plist->size); |
| | |
| | | |
| | | args.min = net.min_crop; |
| | | args.max = net.max_crop; |
| | | args.flip = net.flip; |
| | | args.angle = net.angle; |
| | | args.aspect = net.aspect; |
| | | args.exposure = net.exposure; |
| | |
| | | char *valid_list = option_find_str(options, "valid", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int topk = option_find_int(options, "top", 1); |
| | | if (topk > classes) topk = classes; |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(valid_list); |
| | |
| | | char *valid_list = option_find_str(options, "valid", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int topk = option_find_int(options, "top", 1); |
| | | if (topk > classes) topk = classes; |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(valid_list); |
| | |
| | | char *valid_list = option_find_str(options, "valid", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int topk = option_find_int(options, "top", 1); |
| | | if (topk > classes) topk = classes; |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(valid_list); |
| | |
| | | char *valid_list = option_find_str(options, "valid", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int topk = option_find_int(options, "top", 1); |
| | | if (topk > classes) topk = classes; |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(valid_list); |
| | |
| | | char *valid_list = option_find_str(options, "valid", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int topk = option_find_int(options, "top", 1); |
| | | if (topk > classes) topk = classes; |
| | | |
| | | char **labels = get_labels(label_list); |
| | | list *plist = get_paths(valid_list); |
| | |
| | | |
| | | void try_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int layer_num) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | network net = parse_network_cfg_custom(cfgfile, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | |
| | | |
| | | char *name_list = option_find_str(options, "names", 0); |
| | | if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int top = option_find_int(options, "top", 1); |
| | | if (top > classes) top = classes; |
| | | |
| | | int i = 0; |
| | | char **names = get_labels(name_list); |
| | |
| | | |
| | | void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | network net = parse_network_cfg_custom(cfgfile, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | |
| | | |
| | | char *name_list = option_find_str(options, "names", 0); |
| | | if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list"); |
| | | if(top == 0) top = option_find_int(options, "top", 1); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | if (top == 0) top = option_find_int(options, "top", 1); |
| | | if (top > classes) top = classes; |
| | | |
| | | int i = 0; |
| | | char **names = get_labels(name_list); |
| | |
| | | strtok(input, "\n"); |
| | | } |
| | | image im = load_image_color(input, 0, 0); |
| | | image r = letterbox_image(im, net.w, net.h); |
| | | image r = letterbox_image(im, net.w, net.h); |
| | | //image r = resize_min(im, size); |
| | | //resize_network(&net, r.w, r.h); |
| | | printf("%d %d\n", r.w, r.h); |
| | |
| | | srand(2222222); |
| | | CvCapture * cap; |
| | | |
| | | if(filename){ |
| | | cap = cvCaptureFromFile(filename); |
| | | }else{ |
| | | cap = cvCaptureFromCAM(cam_index); |
| | | if (filename) { |
| | | //cap = cvCaptureFromFile(filename); |
| | | cap = get_capture_video_stream(filename); |
| | | } |
| | | else { |
| | | //cap = cvCaptureFromCAM(cam_index); |
| | | cap = get_capture_webcam(cam_index); |
| | | } |
| | | |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int top = option_find_int(options, "top", 1); |
| | | if (top > classes) top = classes; |
| | | |
| | | char *name_list = option_find_str(options, "names", 0); |
| | | char **names = get_labels(name_list); |
| | |
| | | struct timeval tval_before, tval_after, tval_result; |
| | | gettimeofday(&tval_before, NULL); |
| | | |
| | | image in = get_image_from_stream(cap); |
| | | //image in = get_image_from_stream(cap); |
| | | image in = get_image_from_stream_cpp(cap); |
| | | if(!in.data) break; |
| | | image in_s = resize_image(in, net.w, net.h); |
| | | |
| | |
| | | srand(2222222); |
| | | CvCapture * cap; |
| | | |
| | | if(filename){ |
| | | cap = cvCaptureFromFile(filename); |
| | | }else{ |
| | | cap = cvCaptureFromCAM(cam_index); |
| | | if (filename) { |
| | | //cap = cvCaptureFromFile(filename); |
| | | cap = get_capture_video_stream(filename); |
| | | } |
| | | else { |
| | | //cap = cvCaptureFromCAM(cam_index); |
| | | cap = get_capture_webcam(cam_index); |
| | | } |
| | | |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int top = option_find_int(options, "top", 1); |
| | | if (top > classes) top = classes; |
| | | |
| | | char *name_list = option_find_str(options, "names", 0); |
| | | char **names = get_labels(name_list); |
| | |
| | | struct timeval tval_before, tval_after, tval_result; |
| | | gettimeofday(&tval_before, NULL); |
| | | |
| | | image in = get_image_from_stream(cap); |
| | | //image in = get_image_from_stream(cap); |
| | | image in = get_image_from_stream_cpp(cap); |
| | | image in_s = resize_image(in, net.w, net.h); |
| | | show_image(in, "Threat Detection"); |
| | | |
| | |
| | | { |
| | | #ifdef OPENCV |
| | | printf("Classifier Demo\n"); |
| | | network net = parse_network_cfg(cfgfile); |
| | | network net = parse_network_cfg_custom(cfgfile, 1); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | |
| | | CvCapture * cap; |
| | | |
| | | if(filename){ |
| | | cap = cvCaptureFromFile(filename); |
| | | //cap = cvCaptureFromFile(filename); |
| | | cap = get_capture_video_stream(filename); |
| | | }else{ |
| | | cap = cvCaptureFromCAM(cam_index); |
| | | //cap = cvCaptureFromCAM(cam_index); |
| | | cap = get_capture_webcam(cam_index); |
| | | } |
| | | |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int top = option_find_int(options, "top", 1); |
| | | if (top > classes) top = classes; |
| | | |
| | | char *name_list = option_find_str(options, "names", 0); |
| | | char **names = get_labels(name_list); |
| | |
| | | struct timeval tval_before, tval_after, tval_result; |
| | | gettimeofday(&tval_before, NULL); |
| | | |
| | | image in = get_image_from_stream(cap); |
| | | //image in = get_image_from_stream(cap); |
| | | image in = get_image_from_stream_cpp(cap); |
| | | image in_s = resize_image(in, net.w, net.h); |
| | | show_image(in, "Classifier"); |
| | | |
| | |
| | | ngpus = 1; |
| | | } |
| | | |
| | | int dont_show = find_arg(argc, argv, "-dont_show"); |
| | | int cam_index = find_int_arg(argc, argv, "-c", 0); |
| | | int top = find_int_arg(argc, argv, "-t", 0); |
| | | int clear = find_arg(argc, argv, "-clear"); |
| | |
| | | int layer = layer_s ? atoi(layer_s) : -1; |
| | | if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename, top); |
| | | else if(0==strcmp(argv[2], "try")) try_classifier(data, cfg, weights, filename, atoi(layer_s)); |
| | | else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, gpus, ngpus, clear); |
| | | else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, gpus, ngpus, clear, dont_show); |
| | | else if(0==strcmp(argv[2], "demo")) demo_classifier(data, cfg, weights, cam_index, filename); |
| | | else if(0==strcmp(argv[2], "gun")) gun_classifier(data, cfg, weights, cam_index, filename); |
| | | else if(0==strcmp(argv[2], "threat")) threat_classifier(data, cfg, weights, cam_index, filename); |