Edmond Yoo
2018-09-16 176260d82a4d82ce4ce1f09cd6139a50e1a2aa84
README.md
@@ -91,4 +91,14 @@
<img src="https://github.com/hj3yoo/darknet/blob/master/figures/4_detection_result_1.jpg" width="360"> <img src="https://github.com/hj3yoo/darknet/blob/master/figures/4_detection_result_2.jpg" width="360"><img src="https://github.com/hj3yoo/darknet/blob/master/figures/4_detection_result_3.jpg" width="360"> <img src="https://github.com/hj3yoo/darknet/blob/master/figures/4_detection_result_4.png" width="360">
They're of course slightly worse than annonymous detection and impractical for any large number of cardbase, but it was an interesting approach.
They're of course slightly worse than annonymous detection and impractical for any large number of cardbase, but it was an interesting approach.
------------------
I've made a quick openCV algorithm to extract cards from the image, and it works decently well:
<img src="https://github.com/hj3yoo/darknet/blob/master/figures/4_detection_result_5.png" width="360">
At the moment, it's fairly limited - the entire card must be shown without obstruction nor cropping, otherwise it won't detect at all.
Unfortunately, there is very little use case for my trained network in this algorithm. It's just using contour detection and perceptual hashing to match the card.