Edmond Yoo
2018-09-16 176260d82a4d82ce4ce1f09cd6139a50e1a2aa84
opencv_dnn.py
@@ -1,14 +1,139 @@
import cv2
import numpy as np
import pandas as pd
import imagehash as ih
import os
import sys
from operator import itemgetter
import math
import random
from PIL import Image
import fetch_data
import transform_data
card_width = 315
card_height = 440
def calc_image_hashes(card_pool, save_to=None):
    card_pool['art_hash'] = np.NaN
    for ind, card_info in card_pool.iterrows():
        if ind % 100 == 0:
            print(ind)
        img_name = '%s/card_img/png/%s/%s_%s.png' % (transform_data.data_dir, card_info['set'],
                                                     card_info['collector_number'],
                                                     fetch_data.get_valid_filename(card_info['name']))
        card_img = cv2.imread(img_name)
        if card_img is None:
            fetch_data.fetch_card_image(card_info,
                                        out_dir='%s/card_img/png/%s' % (transform_data.data_dir, card_info['set']))
            card_img = cv2.imread(img_name)
        if card_img is None:
            print('WARNING: card %s is not found!' % img_name)
        img_art = Image.fromarray(card_img[121:580, 63:685])
        art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4)
        card_pool.at[ind, 'art_hash'] = art_hash
        img_card = Image.fromarray(card_img)
        card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4)
        card_pool.at[ind, 'card_hash'] = card_hash
        card_pool = card_pool[['artist', 'border_color', 'collector_number', 'color_identity', 'colors', 'flavor_text',
                               'image_uris', 'mana_cost', 'legalities', 'name', 'oracle_text', 'rarity', 'type_line',
                               'set', 'set_name', 'power', 'toughness', 'art_hash', 'card_hash']]
    if save_to is not None:
        card_pool.to_pickle(save_to)
    return card_pool
'''
df_list = []
for set_name in fetch_data.all_set_list:
    csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, set_name)
    df = fetch_data.load_all_cards_text(csv_name)
    df_list.append(df)
    #print(df)
card_pool = pd.concat(df_list)
card_pool.reset_index(drop=True, inplace=True)
card_pool.drop('Unnamed: 0', axis=1, inplace=True, errors='ignore')
card_pool = calc_image_hashes(card_pool, save_to='card_pool.pck')
'''
#csv_name = '%s/csv/%s.csv' % (transform_data.data_dir, 'rtr')
#card_pool = fetch_data.load_all_cards_text(csv_name)
#card_pool = calc_image_hashes(card_pool)
card_pool = pd.read_pickle('card_pool.pck')
# Disclaimer: majority of the basic framework in this file is modified from the following tutorial:
# https://www.learnopencv.com/deep-learning-based-object-detection-using-yolov3-with-opencv-python-c/
# www.pyimagesearch.com/2014/08/25/4-point-opencv-getperspective-transform-example/
def order_points(pts):
    # initialzie a list of coordinates that will be ordered
    # such that the first entry in the list is the top-left,
    # the second entry is the top-right, the third is the
    # bottom-right, and the fourth is the bottom-left
    rect = np.zeros((4, 2), dtype="float32")
    # the top-left point will have the smallest sum, whereas
    # the bottom-right point will have the largest sum
    s = pts.sum(axis=1)
    rect[0] = pts[np.argmin(s)]
    rect[2] = pts[np.argmax(s)]
    # now, compute the difference between the points, the
    # top-right point will have the smallest difference,
    # whereas the bottom-left will have the largest difference
    diff = np.diff(pts, axis=1)
    rect[1] = pts[np.argmin(diff)]
    rect[3] = pts[np.argmax(diff)]
    # return the ordered coordinates
    return rect
def four_point_transform(image, pts):
    # obtain a consistent order of the points and unpack them
    # individually
    rect = order_points(pts)
    (tl, tr, br, bl) = rect
    # compute the width of the new image, which will be the
    # maximum distance between bottom-right and bottom-left
    # x-coordiates or the top-right and top-left x-coordinates
    widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
    widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
    maxWidth = max(int(widthA), int(widthB))
    # compute the height of the new image, which will be the
    # maximum distance between the top-right and bottom-right
    # y-coordinates or the top-left and bottom-left y-coordinates
    heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
    heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
    maxHeight = max(int(heightA), int(heightB))
    # now that we have the dimensions of the new image, construct
    # the set of destination points to obtain a "birds eye view",
    # (i.e. top-down view) of the image, again specifying points
    # in the top-left, top-right, bottom-right, and bottom-left
    # order
    dst = np.array([
        [0, 0],
        [maxWidth - 1, 0],
        [maxWidth - 1, maxHeight - 1],
        [0, maxHeight - 1]], dtype="float32")
    # compute the perspective transform matrix and then apply it
    M = cv2.getPerspectiveTransform(rect, dst)
    warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
    # If the image is horizontally long, rotate it by 90
    if maxWidth > maxHeight:
        center = (maxHeight / 2, maxHeight / 2)
        M_rot = cv2.getRotationMatrix2D(center, 270, 1.0)
        warped = cv2.warpAffine(warped, M_rot, (maxHeight, maxWidth))
    # return the warped image
    return warped
# Get the names of the output layers
def get_outputs_names(net):
    # Get the names of all the layers in the network
@@ -22,6 +147,7 @@
    frame_height = frame.shape[0]
    frame_width = frame.shape[1]
    # Scan through all the bounding boxes output from the network and keep only the
    # ones with high confidence scores. Assign the box's class label as the class with the highest score.
    class_ids = []
@@ -69,6 +195,11 @@
def remove_glare(img):
    """
    Inspired from:
    http://www.amphident.de/en/blog/preprocessing-for-automatic-pattern-identification-in-wildlife-removing-glare.html
    The idea is to find area that has low saturation but high value, which is what a glare usually look like.
    """
    img_hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
    _, s, v = cv2.split(img_hsv)
    non_sat = (s < 32) * 255  # Find all pixels that are not very saturated
@@ -80,19 +211,50 @@
    # Set all brightness values, where the pixels are still saturated to 0.
    v[non_sat == 0] = 0
    # filter out very bright pixels.
    glare = (v > 240) * 255
    glare = (v > 200) * 255
    # Slightly increase the area for each pixel
    glare = cv2.dilate(glare.astype(np.uint8), disk)
    #glare = cv2.dilate(glare.astype(np.uint8), disk);
    #corrected = cv2.inpaint(img, glare, 7, cv2.INPAINT_TELEA)
    glare_reduced = np.ones((img.shape[0], img.shape[1], 3), dtype=np.uint8) * 200
    glare = cv2.cvtColor(glare, cv2.COLOR_GRAY2BGR)
    corrected = np.where(glare, glare_reduced, img)
    return corrected
def find_card(img, thresh_c=5, kernel_size=(3, 3), size_ratio=0.3):
    # Typical pre-processing - grayscale, blurring, thresholding
    img_gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    img_blur = cv2.medianBlur(img_gray, 5)
    img_thresh = cv2.adaptiveThreshold(img_blur, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 5, thresh_c)
    # Dilute the image, then erode them to remove minor noises
    kernel = np.ones(kernel_size, np.uint8)
    img_dilate = cv2.dilate(img_thresh, kernel, iterations=1)
    img_erode = cv2.erode(img_dilate, kernel, iterations=1)
    # Find the contour
    #img_contour = img_erode.copy()
    _, cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    if len(cnts) == 0:
        print('no contours')
        return []
    #img_contour = cv2.cvtColor(img_contour, cv2.COLOR_GRAY2BGR)
    #img_contour = cv2.drawContours(img_contour, cnts, -1, (0, 255, 0), 1)
    #cv2.imshow('test', img_contour)
    # For each contours detected, check if they are large enough and are rectangle
    cnts_rect = []
    ind_sort = sorted(range(len(cnts)), key=lambda i: cv2.contourArea(cnts[i]), reverse=True)
    for i in range(len(cnts)):
        size = cv2.contourArea(cnts[ind_sort[i]])
        peri = cv2.arcLength(cnts[ind_sort[i]], True)
        approx = cv2.approxPolyDP(cnts[ind_sort[i]], 0.04 * peri, True)
        if size > img.shape[0] * img.shape[1] * size_ratio and len(approx) == 4:
            cnts_rect.append(approx)
    return cnts_rect
def detect_frame(net, classes, img, thresh_conf=0.5, thresh_nms=0.4, in_dim=(416, 416), display=True, out_path=None):
    img_copy = img.copy()
    # Create a 4D blob from a frame.
@@ -120,23 +282,18 @@
    if out_path is not None:
        cv2.imwrite(out_path, img.astype(np.uint8))
    if display:
        no_glare = remove_glare(img_copy)
        img_concat = np.concatenate((img, no_glare), axis=1)
        cv2.imshow('result', img_concat)
        #no_glare = remove_glare(img_copy)
        #img_concat = np.concatenate((img, no_glare), axis=1)
        cv2.imshow('result', img)
        '''
        for i in range(len(obj_list)):
            class_id, confidence, box = obj_list[i]
            left, top, width, height = box
            img_snip = img[max(0, top):min(img.shape[0], top + height), max(0, left):min(img.shape[1], left + width)]
            #cv2.imshow('feature#%d' % i, img_snip)
            img_hsv = cv2.cvtColor(img_snip, cv2.COLOR_BGR2HSV)
            h, s, v = cv2.split(img_hsv)
            #h = cv2.cvtColor(h, cv2.COLOR_GRAY2BGR)
            s = cv2.cvtColor(s, cv2.COLOR_GRAY2BGR)
            v = cv2.cvtColor(v, cv2.COLOR_GRAY2BGR)
            img_concat = np.concatenate((img_snip, s, v), axis=1)
            cv2.imshow('feature#%d - hsv' % i, img_concat)
            img_snip = img_copy[max(0, top):min(img.shape[0], top + height),
                                max(0, left):min(img.shape[1], left + width)]
            img_thresh, img_dilate, img_canny, img_hough = find_card(img_snip)
            img_concat = np.concatenate((img_snip, img_thresh, img_dilate, img_canny, img_hough), axis=1)
            cv2.imshow('feature#%d' % i, img_concat)
        '''
        cv2.waitKey(0)
        cv2.destroyAllWindows()
@@ -160,30 +317,72 @@
        img = frame.copy()
        obj_list = detect_frame(net, classes, frame, thresh_conf=thresh_conf, thresh_nms=thresh_nms, in_dim=in_dim,
                                display=False, out_path=None)
        #cnts_rect = find_card(img)
        max_num_obj = max(max_num_obj, len(obj_list))
        if display:
            no_glare = remove_glare(img)
            img_concat = np.concatenate((frame, no_glare), axis=1)
            cv2.imshow('result', img_concat)
            '''
            img_result = frame.copy()
            #img_result = cv2.drawContours(img_result, cnts_rect, -1, (0, 255, 0), 2)
            #for i in range(len(cnts_rect)):
            #    pts = np.float32([p[0] for p in cnts_rect[i]])
            #    img_warp = four_point_transform(img, pts)
            #    cv2.imshow('card#%d' % i, img_warp)
            #for i in range(len(cnts_rect), max_num_obj):
            #    cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
            #no_glare = remove_glare(img)
            #img_thresh, img_erode, img_contour = find_card(no_glare)
            #img_concat = np.concatenate((no_glare, img_contour), axis=1)
            for i in range(len(obj_list)):
                class_id, confidence, box = obj_list[i]
                left, top, width, height = box
                img_snip = img[max(0, top):min(img.shape[0], top + height),
                           max(0, left):min(img.shape[1], left + width)]
                # cv2.imshow('feature#%d' % i, img_snip)
                img_hsv = cv2.cvtColor(img_snip, cv2.COLOR_BGR2HSV)
                h, s, v = cv2.split(img_hsv)
                # h = cv2.cvtColor(h, cv2.COLOR_GRAY2BGR)
                s = cv2.cvtColor(s, cv2.COLOR_GRAY2BGR)
                v = cv2.cvtColor(v, cv2.COLOR_GRAY2BGR)
                img_concat = np.concatenate((img_snip, s, v), axis=1)
                cv2.imshow('feature#%d - hsv' % i, img_concat)
                offset_ratio = 0.1
                x1 = max(0, int(left - offset_ratio * width))
                x2 = min(img.shape[1], int(left + (1 + offset_ratio) * width))
                y1 = max(0, int(top - offset_ratio * height))
                y2 = min(img.shape[0], int(top + (1 + offset_ratio) * height))
                img_snip = img[y1:y2, x1:x2]
                cnts = find_card(img_snip)
                if len(cnts) > 0:
                    cnt = cnts[-1]
                    pts = np.float32([p[0] for p in cnt])
                    img_warp = four_point_transform(img_snip, pts)
                    img_warp = cv2.resize(img_warp, (card_width, card_height))
                    '''
                    img_art = img_warp[47:249, 22:294]
                    img_art = Image.fromarray(img_art.astype('uint8'), 'RGB')
                    art_hash = ih.phash(img_art, hash_size=32, highfreq_factor=4)
                    card_pool['hash_diff'] = card_pool['art_hash'] - art_hash
                    min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])]
                    guttersnipe = card_pool[card_pool['name'] == 'Cyclonic Rift']
                    diff = guttersnipe['art_hash'] - art_hash
                    print(diff)
                    card_name = min_cards.iloc[0]['name']
                    #print(min_cards.iloc[0]['name'], min_cards.iloc[0]['hash_diff'])
                    '''
                    img_card = Image.fromarray(img_warp.astype('uint8'), 'RGB')
                    card_hash = ih.phash(img_card, hash_size=32, highfreq_factor=4)
                    card_pool['hash_diff'] = card_pool['card_hash'] - card_hash
                    min_cards = card_pool[card_pool['hash_diff'] == min(card_pool['hash_diff'])]
                    card_name = min_cards.iloc[0]['name']
                    hash_diff = min_cards.iloc[0]['hash_diff']
                    #guttersnipe = card_pool[card_pool['name'] == 'Cyclonic Rift']
                    #diff = guttersnipe['card_hash'] - card_hash
                    #print(diff)
                    #img_thresh, img_dilate, img_contour = find_card(img_snip)
                    #img_concat = np.concatenate((img_snip, img_contour), axis=1)
                    cv2.rectangle(img_warp, (22, 47), (294, 249), (0, 255, 0), 2)
                    cv2.putText(img_warp, card_name + ', ' + str(hash_diff), (0, 50),
                                cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255), 2)
                    cv2.imshow('card#%d' % i, img_warp)
                else:
                    cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
            for i in range(len(obj_list), max_num_obj):
                cv2.imshow('feature#%d - hsv' % i, np.zeros((1, 1), dtype=np.uint8))
            '''
                cv2.imshow('card#%d' % i, np.zeros((1, 1), dtype=np.uint8))
            cv2.imshow('result', img_result)
            #if len(obj_list) > 0:
                #cv2.waitKey(0)
            #    cv2.waitKey(0)
        if out_path is not None:
            vid_writer.write(frame.astype(np.uint8))
        cv2.waitKey(1)
@@ -195,10 +394,13 @@
def main():
    # Specify paths for all necessary files
    test_path = os.path.abspath('../data/test18.jpg')
    test_path = os.path.abspath('test_file/test4.mp4')
    #weight_path = 'backup/tiny_yolo_10_39500.weights'
    #cfg_path = 'cfg/tiny_yolo_10.cfg'
    #class_path = "data/obj_10.names"
    weight_path = 'weights/second_general/tiny_yolo_final.weights'
    cfg_path = 'cfg/tiny_yolo.cfg'
    class_path = "data/obj.names"
    class_path = 'data/obj.names'
    out_dir = 'out'
    if not os.path.isfile(test_path):
        print('The test file %s doesn\'t exist!' % os.path.abspath(test_path))
@@ -213,6 +415,9 @@
        print('The class file %s doesn\'t exist!' % os.path.abspath(test_path))
        return
    thresh_conf = 0.01
    thresh_nms = 0.8
    # Setup
    # Read class names from text file
    with open(class_path, 'r') as f:
@@ -232,10 +437,10 @@
    if test_ext in ['jpg', 'jpeg', 'bmp', 'png', 'tiff']:
        img = cv2.imread(test_path)
        detect_frame(net, classes, img, out_path=out_path)
        detect_frame(net, classes, img, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms)
    else:
        capture = cv2.VideoCapture(test_path)
        detect_video(net, classes, capture, out_path=out_path)
        capture = cv2.VideoCapture(0)
        detect_video(net, classes, capture, out_path=out_path, thresh_conf=thresh_conf, thresh_nms=thresh_nms)
        capture.release()
    pass