| | |
| | | layer->bias_updates = calloc(n, sizeof(float)); |
| | | layer->bias_momentum = calloc(n, sizeof(float)); |
| | | float scale = 1./(size*size*c); |
| | | //scale = .0001; |
| | | for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform()-.5); |
| | | scale = .05; |
| | | for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*2*(rand_uniform()-.5); |
| | | for(i = 0; i < n; ++i){ |
| | | //layer->biases[i] = rand_normal()*scale + scale; |
| | | layer->biases[i] = .5; |
| | |
| | | *convolutional_out_width(layer); |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | for(i = 0; i < layer.n; ++i){ |
| | | layer.bias_updates[i] += mean_array(layer.delta+size*(i+b*layer.n), size); |
| | | layer.bias_updates[i] += sum_array(layer.delta+size*(i+b*layer.n), size); |
| | | } |
| | | } |
| | | } |