| | |
| | | |
| | | #include "parser.h" |
| | | #include "activations.h" |
| | | #include "crop_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "maxpool_layer.h" |
| | |
| | | int is_maxpool(section *s); |
| | | int is_dropout(section *s); |
| | | int is_softmax(section *s); |
| | | int is_crop(section *s); |
| | | int is_normalization(section *s); |
| | | list *read_cfg(char *filename); |
| | | |
| | |
| | | free(s); |
| | | } |
| | | |
| | | void parse_data(char *data, float *a, int n) |
| | | { |
| | | int i; |
| | | if(!data) return; |
| | | char *curr = data; |
| | | char *next = data; |
| | | int done = 0; |
| | | for(i = 0; i < n && !done; ++i){ |
| | | while(*++next !='\0' && *next != ','); |
| | | if(*next == '\0') done = 1; |
| | | *next = '\0'; |
| | | sscanf(curr, "%g", &a[i]); |
| | | curr = next+1; |
| | | } |
| | | } |
| | | |
| | | convolutional_layer *parse_convolutional(list *options, network *net, int count) |
| | | { |
| | | int i; |
| | |
| | | } |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | | if(biases){ |
| | | char *curr = biases; |
| | | char *next = biases; |
| | | int done = 0; |
| | | for(i = 0; i < n && !done; ++i){ |
| | | while(*++next !='\0' && *next != ','); |
| | | if(*next == '\0') done = 1; |
| | | *next = '\0'; |
| | | sscanf(curr, "%g", &layer->biases[i]); |
| | | curr = next+1; |
| | | } |
| | | } |
| | | if(weights){ |
| | | char *curr = weights; |
| | | char *next = weights; |
| | | int done = 0; |
| | | for(i = 0; i < c*n*size*size && !done; ++i){ |
| | | while(*++next !='\0' && *next != ','); |
| | | if(*next == '\0') done = 1; |
| | | *next = '\0'; |
| | | sscanf(curr, "%g", &layer->filters[i]); |
| | | curr = next+1; |
| | | } |
| | | } |
| | | parse_data(biases, layer->biases, n); |
| | | parse_data(weights, layer->filters, c*n*size*size); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | |
| | | curr = next+1; |
| | | } |
| | | } |
| | | char *weights = option_find_str(options, "weights", 0); |
| | | char *biases = option_find_str(options, "biases", 0); |
| | | parse_data(biases, layer->biases, output); |
| | | parse_data(weights, layer->weights, input*output); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | |
| | | return layer; |
| | | } |
| | | |
| | | crop_layer *parse_crop(list *options, network *net, int count) |
| | | { |
| | | float learning_rate, momentum, decay; |
| | | int h,w,c; |
| | | int crop_height = option_find_int(options, "crop_height",1); |
| | | int crop_width = option_find_int(options, "crop_width",1); |
| | | int flip = option_find_int(options, "flip",0); |
| | | if(count == 0){ |
| | | h = option_find_int(options, "height",1); |
| | | w = option_find_int(options, "width",1); |
| | | c = option_find_int(options, "channels",1); |
| | | net->batch = option_find_int(options, "batch",1); |
| | | learning_rate = option_find_float(options, "learning_rate", .001); |
| | | momentum = option_find_float(options, "momentum", .9); |
| | | decay = option_find_float(options, "decay", .0001); |
| | | net->learning_rate = learning_rate; |
| | | net->momentum = momentum; |
| | | net->decay = decay; |
| | | }else{ |
| | | image m = get_network_image_layer(*net, count-1); |
| | | h = m.h; |
| | | w = m.w; |
| | | c = m.c; |
| | | if(h == 0) error("Layer before crop layer must output image."); |
| | | } |
| | | crop_layer *layer = make_crop_layer(net->batch,h,w,c,crop_height,crop_width,flip); |
| | | option_unused(options); |
| | | return layer; |
| | | } |
| | | |
| | | maxpool_layer *parse_maxpool(list *options, network *net, int count) |
| | | { |
| | | int h,w,c; |
| | |
| | | connected_layer *layer = parse_connected(options, &net, count); |
| | | net.types[count] = CONNECTED; |
| | | net.layers[count] = layer; |
| | | }else if(is_crop(s)){ |
| | | crop_layer *layer = parse_crop(options, &net, count); |
| | | net.types[count] = CROP; |
| | | net.layers[count] = layer; |
| | | }else if(is_softmax(s)){ |
| | | softmax_layer *layer = parse_softmax(options, &net, count); |
| | | net.types[count] = SOFTMAX; |
| | |
| | | return net; |
| | | } |
| | | |
| | | int is_crop(section *s) |
| | | { |
| | | return (strcmp(s->type, "[crop]")==0); |
| | | } |
| | | int is_convolutional(section *s) |
| | | { |
| | | return (strcmp(s->type, "[conv]")==0 |
| | |
| | | "activation=%s\n", |
| | | l->outputs, |
| | | get_activation_string(l->activation)); |
| | | fprintf(fp, "data="); |
| | | fprintf(fp, "biases="); |
| | | for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]); |
| | | for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]); |
| | | fprintf(fp, "\n"); |
| | | fprintf(fp, "weights="); |
| | | for(i = 0; i < l->outputs*l->inputs; ++i) fprintf(fp, "%g,", l->weights[i]); |
| | | fprintf(fp, "\n\n"); |
| | | } |
| | | |
| | | void print_crop_cfg(FILE *fp, crop_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[crop]\n"); |
| | | if(count == 0) { |
| | | fprintf(fp, "batch=%d\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n" |
| | | "learning_rate=%g\n" |
| | | "momentum=%g\n" |
| | | "decay=%g\n", |
| | | l->batch,l->h, l->w, l->c, net.learning_rate, net.momentum, net.decay); |
| | | } |
| | | fprintf(fp, "crop_height=%d\ncrop_width=%d\nflip=%d\n\n", l->crop_height, l->crop_width, l->flip); |
| | | } |
| | | |
| | | void print_maxpool_cfg(FILE *fp, maxpool_layer *l, network net, int count) |
| | | { |
| | | fprintf(fp, "[maxpool]\n"); |
| | |
| | | print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == CONNECTED) |
| | | print_connected_cfg(fp, (connected_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == CROP) |
| | | print_crop_cfg(fp, (crop_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == MAXPOOL) |
| | | print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], net, i); |
| | | else if(net.types[i] == NORMALIZATION) |