| | |
| | | #include "utils.h" |
| | | #include "parser.h" |
| | | #include "box.h" |
| | | #include "demo.h" |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | |
| | | |
| | | int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; |
| | | |
| | | image coco_labels[80]; |
| | | |
| | | void train_coco(char *cfgfile, char *weightfile) |
| | | { |
| | | //char *train_images = "/home/pjreddie/data/voc/test/train.txt"; |
| | | char *train_images = "/home/pjreddie/data/coco/train.txt"; |
| | | //char *train_images = "/home/pjreddie/data/coco/train.txt"; |
| | | char *train_images = "data/coco.trainval.txt"; |
| | | //char *train_images = "data/bags.train.list"; |
| | | char *backup_directory = "/home/pjreddie/backup/"; |
| | | srand(time(0)); |
| | | data_seed = time(0); |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | | float avg_loss = -1; |
| | |
| | | args.d = &buffer; |
| | | args.type = REGION_DATA; |
| | | |
| | | args.angle = net.angle; |
| | | args.exposure = net.exposure; |
| | | args.saturation = net.saturation; |
| | | args.hue = net.hue; |
| | | |
| | | pthread_t load_thread = load_data_in_thread(args); |
| | | clock_t time; |
| | | //while(i*imgs < N*120){ |
| | |
| | | avg_loss = avg_loss*.9 + loss*.1; |
| | | |
| | | printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", i, loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); |
| | | if(i%1000==0){ |
| | | if(i%1000==0 || (i < 1000 && i%100 == 0)){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_%d.weights", backup_directory, base, i); |
| | | save_weights(net, buff); |
| | | } |
| | | if(i%100==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s.backup", backup_directory, base); |
| | | save_weights(net, buff); |
| | | } |
| | | free_data(train); |
| | | } |
| | | char buff[256]; |
| | |
| | | save_weights(net, buff); |
| | | } |
| | | |
| | | void convert_coco_detections(float *predictions, int classes, int num, int square, int side, int w, int h, float thresh, float **probs, box *boxes, int only_objectness) |
| | | { |
| | | int i,j,n; |
| | | //int per_cell = 5*num+classes; |
| | | for (i = 0; i < side*side; ++i){ |
| | | int row = i / side; |
| | | int col = i % side; |
| | | for(n = 0; n < num; ++n){ |
| | | int index = i*num + n; |
| | | int p_index = side*side*classes + i*num + n; |
| | | float scale = predictions[p_index]; |
| | | int box_index = side*side*(classes + num) + (i*num + n)*4; |
| | | boxes[index].x = (predictions[box_index + 0] + col) / side * w; |
| | | boxes[index].y = (predictions[box_index + 1] + row) / side * h; |
| | | boxes[index].w = pow(predictions[box_index + 2], (square?2:1)) * w; |
| | | boxes[index].h = pow(predictions[box_index + 3], (square?2:1)) * h; |
| | | for(j = 0; j < classes; ++j){ |
| | | int class_index = i*classes; |
| | | float prob = scale*predictions[class_index+j]; |
| | | probs[index][j] = (prob > thresh) ? prob : 0; |
| | | } |
| | | if(only_objectness){ |
| | | probs[index][0] = scale; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void print_cocos(FILE *fp, int image_id, box *boxes, float **probs, int num_boxes, int classes, int w, int h) |
| | | { |
| | | int i, j; |
| | |
| | | |
| | | layer l = net.layers[net.n-1]; |
| | | int classes = l.classes; |
| | | int square = l.sqrt; |
| | | int side = l.side; |
| | | |
| | | int j; |
| | |
| | | char *path = paths[i+t-nthreads]; |
| | | int image_id = get_coco_image_id(path); |
| | | float *X = val_resized[t].data; |
| | | float *predictions = network_predict(net, X); |
| | | network_predict(net, X); |
| | | int w = val[t].w; |
| | | int h = val[t].h; |
| | | convert_coco_detections(predictions, classes, l.n, square, side, w, h, thresh, probs, boxes, 0); |
| | | get_detection_boxes(l, w, h, thresh, probs, boxes, 0); |
| | | if (nms) do_nms_sort(boxes, probs, side*side*l.n, classes, iou_thresh); |
| | | print_cocos(fp, image_id, boxes, probs, side*side*l.n, classes, w, h); |
| | | free_image(val[t]); |
| | |
| | | |
| | | layer l = net.layers[net.n-1]; |
| | | int classes = l.classes; |
| | | int square = l.sqrt; |
| | | int side = l.side; |
| | | |
| | | int j, k; |
| | |
| | | image orig = load_image_color(path, 0, 0); |
| | | image sized = resize_image(orig, net.w, net.h); |
| | | char *id = basecfg(path); |
| | | float *predictions = network_predict(net, sized.data); |
| | | convert_coco_detections(predictions, classes, l.n, square, side, 1, 1, thresh, probs, boxes, 1); |
| | | network_predict(net, sized.data); |
| | | get_detection_boxes(l, 1, 1, thresh, probs, boxes, 1); |
| | | if (nms) do_nms(boxes, probs, side*side*l.n, 1, nms_thresh); |
| | | |
| | | char *labelpath = find_replace(path, "images", "labels"); |
| | | labelpath = find_replace(labelpath, "JPEGImages", "labels"); |
| | | labelpath = find_replace(labelpath, ".jpg", ".txt"); |
| | | labelpath = find_replace(labelpath, ".JPEG", ".txt"); |
| | | char labelpath[4096]; |
| | | find_replace(path, "images", "labels", labelpath); |
| | | find_replace(labelpath, "JPEGImages", "labels", labelpath); |
| | | find_replace(labelpath, ".jpg", ".txt", labelpath); |
| | | find_replace(labelpath, ".JPEG", ".txt", labelpath); |
| | | |
| | | int num_labels = 0; |
| | | box_label *truth = read_boxes(labelpath, &num_labels); |
| | |
| | | |
| | | void test_coco(char *cfgfile, char *weightfile, char *filename, float thresh) |
| | | { |
| | | |
| | | image **alphabet = load_alphabet(); |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | |
| | | image sized = resize_image(im, net.w, net.h); |
| | | float *X = sized.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | network_predict(net, X); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | convert_coco_detections(predictions, l.classes, l.n, l.sqrt, l.side, 1, 1, thresh, probs, boxes, 0); |
| | | get_detection_boxes(l, 1, 1, thresh, probs, boxes, 0); |
| | | if (nms) do_nms_sort(boxes, probs, l.side*l.side*l.n, l.classes, nms); |
| | | draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, coco_classes, coco_labels, 80); |
| | | draw_detections(im, l.side*l.side*l.n, thresh, boxes, probs, coco_classes, alphabet, 80); |
| | | save_image(im, "prediction"); |
| | | show_image(im, "predictions"); |
| | | |
| | | show_image(sized, "resized"); |
| | | free_image(im); |
| | | free_image(sized); |
| | | #ifdef OPENCV |
| | |
| | | } |
| | | } |
| | | |
| | | void demo_coco(char *cfgfile, char *weightfile, float thresh, int cam_index, char *filename); |
| | | static void demo(char *cfgfile, char *weightfile, float thresh, int cam_index, char* filename) |
| | | { |
| | | #if defined(OPENCV) && defined(GPU) |
| | | demo_coco(cfgfile, weightfile, thresh, cam_index, filename); |
| | | #else |
| | | fprintf(stderr, "Need to compile with GPU and OpenCV for demo.\n"); |
| | | #endif |
| | | } |
| | | |
| | | void run_coco(int argc, char **argv) |
| | | { |
| | | int i; |
| | | for(i = 0; i < 80; ++i){ |
| | | char buff[256]; |
| | | sprintf(buff, "data/labels/%s.png", coco_classes[i]); |
| | | coco_labels[i] = load_image_color(buff, 0, 0); |
| | | } |
| | | int http_stream_port = find_int_arg(argc, argv, "-http_port", -1); |
| | | char *out_filename = find_char_arg(argc, argv, "-out_filename", 0); |
| | | char *prefix = find_char_arg(argc, argv, "-prefix", 0); |
| | | float thresh = find_float_arg(argc, argv, "-thresh", .2); |
| | | int cam_index = find_int_arg(argc, argv, "-c", 0); |
| | | char *file = find_char_arg(argc, argv, "-file", 0); |
| | | int frame_skip = find_int_arg(argc, argv, "-s", 0); |
| | | |
| | | if(argc < 4){ |
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | |
| | | else if(0==strcmp(argv[2], "train")) train_coco(cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid")) validate_coco(cfg, weights); |
| | | else if(0==strcmp(argv[2], "recall")) validate_coco_recall(cfg, weights); |
| | | else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, file); |
| | | else if(0==strcmp(argv[2], "demo")) demo(cfg, weights, thresh, cam_index, filename, coco_classes, 80, frame_skip, |
| | | prefix, out_filename, http_stream_port); |
| | | } |