| | |
| | | import os |
| | | import random |
| | | import math |
| | | import argparse |
| | | import cv2 |
| | | import numpy as np |
| | | import imutils |
| | | import pandas as pd |
| | | import fetch_data |
| | | import generate_data |
| | | from shapely import geometry |
| | | import imgaug as ia |
| | | from imgaug import augmenters as iaa |
| | | from imgaug import parameters as iap |
| | | import imutils |
| | | import math |
| | | import numpy as np |
| | | import os |
| | | import pandas as pd |
| | | import random |
| | | from shapely import geometry |
| | | |
| | | card_mask = cv2.imread('data/mask.png') |
| | | data_dir = os.path.abspath('/media/win10/data') |
| | | darknet_dir = os.path.abspath('.') |
| | | import fetch_data |
| | | import generate_data |
| | | from config import Config |
| | | |
| | | |
| | | def key_pts_to_yolo(key_pts, w_img, h_img): |
| | |
| | | """ |
| | | self.check_visibility(visibility=visibility) |
| | | img_result = np.zeros((self.height, self.width, 3), dtype=np.uint8) |
| | | card_mask = cv2.imread(Config.card_mask_path) |
| | | |
| | | for card in self.cards: |
| | | card_x = int(card.x + 0.5) |
| | |
| | | self.visible = False |
| | | |
| | | |
| | | def main(): |
| | | def main(args): |
| | | random.seed() |
| | | ia.seed(random.randrange(10000)) |
| | | |
| | | bg_images = generate_data.load_dtd(dtd_dir='%s/dtd/images' % data_dir, dump_it=False) |
| | | bg_images = generate_data.load_dtd(dtd_dir='%s/dtd/images' % Config.data_dir, dump_it=False) |
| | | background = generate_data.Backgrounds(images=bg_images) |
| | | |
| | | card_pool = pd.DataFrame() |
| | | for set_name in fetch_data.all_set_list: |
| | | df = fetch_data.load_all_cards_text('%s/csv/%s.csv' % (data_dir, set_name)) |
| | | for set_name in Config.all_set_list: |
| | | df = fetch_data.load_all_cards_text('%s/csv/%s.csv' % (Config.data_dir, set_name)) |
| | | card_pool = card_pool.append(df) |
| | | class_ids = {} |
| | | with open('%s/obj.names' % data_dir) as names_file: |
| | | with open('%s/obj.names' % Config.data_dir) as names_file: |
| | | class_name_list = names_file.read().splitlines() |
| | | for i in range(len(class_name_list)): |
| | | class_ids[class_name_list[i]] = i |
| | | |
| | | num_gen = 60000 |
| | | num_iter = 1 |
| | | w_gen = 1440 |
| | | h_gen = 960 |
| | | |
| | | for i in range(num_gen): |
| | | for i in range(args.num_gen): |
| | | # Arbitrarily select top left and right corners for perspective transformation |
| | | # Since the training image are generated with random rotation, don't need to skew all four sides |
| | | skew = [[random.uniform(0, 0.25), 0], [0, 1], [1, 1], |
| | | [random.uniform(0.75, 1), 0]] |
| | | generator = ImageGenerator(background.get_random(), class_ids, w_gen, h_gen, skew=skew) |
| | | generator = ImageGenerator(background.get_random(), class_ids, args.width, args.height, skew=skew) |
| | | out_name = '' |
| | | |
| | | # Use 2 to 5 cards per generator |
| | | for _, card_info in card_pool.sample(random.randint(2, 5)).iterrows(): |
| | | img_name = '%s/card_img/png/%s/%s_%s.png' % (data_dir, card_info['set'], card_info['collector_number'], |
| | | img_name = '%s/card_img/png/%s/%s_%s.png' % (Config.data_dir, card_info['set'], |
| | | card_info['collector_number'], |
| | | fetch_data.get_valid_filename(card_info['name'])) |
| | | out_name += '%s%s_' % (card_info['set'], card_info['collector_number']) |
| | | card_img = cv2.imread(img_name) |
| | | if card_img is None: |
| | | fetch_data.fetch_card_image(card_info, out_dir='%s/card_img/png/%s' % (data_dir, card_info['set'])) |
| | | fetch_data.fetch_card_image(card_info, out_dir='%s/card_img/png/%s' % (Config.data_dir, |
| | | card_info['set'])) |
| | | card_img = cv2.imread(img_name) |
| | | if card_img is None: |
| | | print('WARNING: card %s is not found!' % img_name) |
| | |
| | | card = Card(card_img, card_info, detected_object_list) |
| | | generator.add_card(card) |
| | | |
| | | for j in range(num_iter): |
| | | for j in range(args.num_iter): |
| | | seq = iaa.Sequential([ |
| | | iaa.Multiply((0.8, 1.2)), # darken / brighten the whole image |
| | | iaa.SimplexNoiseAlpha(first=iaa.Add(random.randrange(64)), per_channel=0.1, size_px_max=[3, 6], |
| | |
| | | if i % 3 == 0: |
| | | generator.generate_non_obstructive() |
| | | generator.export_training_data(visibility=0.0, out_name='%s/train/non_obstructive_update/%s%d' |
| | | % (data_dir, out_name, j), aug=seq) |
| | | % (Config.data_dir, out_name, j), aug=seq) |
| | | elif i % 3 == 1: |
| | | generator.generate_horizontal_span(theta=random.uniform(-math.pi, math.pi)) |
| | | generator.export_training_data(visibility=0.0, out_name='%s/train/horizontal_span_update/%s%d' |
| | | % (data_dir, out_name, j), aug=seq) |
| | | % (Config.data_dir, out_name, j), aug=seq) |
| | | else: |
| | | generator.generate_vertical_span(theta=random.uniform(-math.pi, math.pi)) |
| | | generator.export_training_data(visibility=0.0, out_name='%s/train/vertical_span_update/%s%d' |
| | | % (data_dir, out_name, j), aug=seq) |
| | | % (Config.data_dir, out_name, j), aug=seq) |
| | | |
| | | #generator.generate_horizontal_span(theta=random.uniform(-math.pi, math.pi)) |
| | | #generator.render(display=True, aug=seq, debug=True) |
| | |
| | | |
| | | |
| | | if __name__ == '__main__': |
| | | main() |
| | | parser = argparse.ArgumentParser() |
| | | parser.add_argument('-n', '--num_gen', dest='num_gen', help='Number of training images to generate', |
| | | type=int, required=True) |
| | | parser.add_argument('-ni', '--num_iter', dest='num_iter', help='Number of iterations to generate each config', |
| | | type=int, default=1) |
| | | parser.add_argument('-w', '--width', dest='width', help='Width of the training image', type=int, default=1440) |
| | | parser.add_argument('-ht', '--height', dest='height', help='Height of the training image', type=int, default=960) |
| | | args = parser.parse_args() |
| | | main(args) |