| | |
| | | #include <stdio.h> |
| | | #include <time.h> |
| | | #include "network.h" |
| | | #include "image.h" |
| | | #include "data.h" |
| | | #include "utils.h" |
| | | |
| | | #include "crop_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "convolutional_layer.h" |
| | | //#include "old_conv.h" |
| | | #include "maxpool_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "normalization_layer.h" |
| | | #include "freeweight_layer.h" |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | | |
| | | network make_network(int n) |
| | | network make_network(int n, int batch) |
| | | { |
| | | network net; |
| | | net.n = n; |
| | | net.batch = batch; |
| | | net.layers = calloc(net.n, sizeof(void *)); |
| | | net.types = calloc(net.n, sizeof(LAYER_TYPE)); |
| | | net.outputs = 0; |
| | | net.output = 0; |
| | | #ifdef GPU |
| | | net.input_cl = calloc(1, sizeof(cl_mem)); |
| | | net.truth_cl = calloc(1, sizeof(cl_mem)); |
| | | #endif |
| | | return net; |
| | | } |
| | | |
| | | void print_convolutional_cfg(FILE *fp, convolutional_layer *l) |
| | | { |
| | | int i; |
| | | fprintf(fp, "[convolutional]\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n" |
| | | "filters=%d\n" |
| | | "size=%d\n" |
| | | "stride=%d\n" |
| | | "activation=%s\n", |
| | | l->h, l->w, l->c, |
| | | l->n, l->size, l->stride, |
| | | get_activation_string(l->activation)); |
| | | fprintf(fp, "data="); |
| | | for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]); |
| | | for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]); |
| | | fprintf(fp, "\n\n"); |
| | | } |
| | | void print_connected_cfg(FILE *fp, connected_layer *l) |
| | | { |
| | | int i; |
| | | fprintf(fp, "[connected]\n" |
| | | "input=%d\n" |
| | | "output=%d\n" |
| | | "activation=%s\n", |
| | | l->inputs, l->outputs, |
| | | get_activation_string(l->activation)); |
| | | fprintf(fp, "data="); |
| | | for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]); |
| | | for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]); |
| | | fprintf(fp, "\n\n"); |
| | | } |
| | | #ifdef GPU |
| | | |
| | | void print_maxpool_cfg(FILE *fp, maxpool_layer *l) |
| | | void forward_network_gpu(network net, cl_mem input, cl_mem truth, int train) |
| | | { |
| | | fprintf(fp, "[maxpool]\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n" |
| | | "stride=%d\n\n", |
| | | l->h, l->w, l->c, |
| | | l->stride); |
| | | } |
| | | |
| | | void print_softmax_cfg(FILE *fp, softmax_layer *l) |
| | | { |
| | | fprintf(fp, "[softmax]\n" |
| | | "input=%d\n\n", |
| | | l->inputs); |
| | | } |
| | | |
| | | void save_network(network net, char *filename) |
| | | { |
| | | FILE *fp = fopen(filename, "w"); |
| | | if(!fp) file_error(filename); |
| | | //printf("start\n"); |
| | | int i; |
| | | for(i = 0; i < net.n; ++i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL) |
| | | print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i]); |
| | | else if(net.types[i] == CONNECTED) |
| | | print_connected_cfg(fp, (connected_layer *)net.layers[i]); |
| | | else if(net.types[i] == MAXPOOL) |
| | | print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i]); |
| | | else if(net.types[i] == SOFTMAX) |
| | | print_softmax_cfg(fp, (softmax_layer *)net.layers[i]); |
| | | for(i = 0; i < net.n; ++i){ |
| | | clock_t time = clock(); |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | forward_convolutional_layer_gpu(layer, input); |
| | | input = layer.output_cl; |
| | | } |
| | | else if(net.types[i] == COST){ |
| | | cost_layer layer = *(cost_layer *)net.layers[i]; |
| | | forward_cost_layer_gpu(layer, input, truth); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | forward_connected_layer_gpu(layer, input); |
| | | input = layer.output_cl; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | forward_maxpool_layer_gpu(layer, input); |
| | | input = layer.output_cl; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | forward_softmax_layer_gpu(layer, input); |
| | | input = layer.output_cl; |
| | | } |
| | | printf("%d %f\n", i, sec(clock()-time)); |
| | | /* |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | forward_crop_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | forward_normalization_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | */ |
| | | } |
| | | fclose(fp); |
| | | } |
| | | |
| | | void forward_network(network net, float *input) |
| | | void backward_network_gpu(network net, cl_mem input) |
| | | { |
| | | int i; |
| | | cl_mem prev_input; |
| | | cl_mem prev_delta; |
| | | for(i = net.n-1; i >= 0; --i){ |
| | | clock_t time = clock(); |
| | | if(i == 0){ |
| | | prev_input = input; |
| | | prev_delta = 0; |
| | | }else{ |
| | | prev_input = get_network_output_cl_layer(net, i-1); |
| | | prev_delta = get_network_delta_cl_layer(net, i-1); |
| | | } |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | backward_convolutional_layer_gpu(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == COST){ |
| | | cost_layer layer = *(cost_layer *)net.layers[i]; |
| | | backward_cost_layer_gpu(layer, prev_input, prev_delta); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | backward_connected_layer_gpu(layer, prev_input, prev_delta); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | backward_maxpool_layer_gpu(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | backward_softmax_layer_gpu(layer, prev_delta); |
| | | } |
| | | printf("back: %d %f\n", i, sec(clock()-time)); |
| | | } |
| | | } |
| | | |
| | | void update_network_gpu(network net) |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | update_convolutional_layer_gpu(layer); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | update_connected_layer_gpu(layer); |
| | | } |
| | | } |
| | | } |
| | | |
| | | cl_mem get_network_output_cl_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.output_cl; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.output_cl; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.output_cl; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.output_cl; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | cl_mem get_network_delta_cl_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.delta_cl; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.delta_cl; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.delta_cl; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.delta_cl; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | #endif |
| | | |
| | | void forward_network(network net, float *input, float *truth, int train) |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | |
| | | forward_connected_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | forward_crop_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == COST){ |
| | | cost_layer layer = *(cost_layer *)net.layers[i]; |
| | | forward_cost_layer(layer, input, truth); |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | forward_softmax_layer(layer, input); |
| | |
| | | forward_maxpool_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | forward_normalization_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | if(!train) continue; |
| | | dropout_layer layer = *(dropout_layer *)net.layers[i]; |
| | | forward_dropout_layer(layer, input); |
| | | } |
| | | else if(net.types[i] == FREEWEIGHT){ |
| | | if(!train) continue; |
| | | freeweight_layer layer = *(freeweight_layer *)net.layers[i]; |
| | | forward_freeweight_layer(layer, input); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void update_network(network net, float step, float momentum, float decay) |
| | | void update_network(network net) |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | update_convolutional_layer(layer, step, momentum, decay); |
| | | update_convolutional_layer(layer); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | |
| | | else if(net.types[i] == SOFTMAX){ |
| | | //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | update_connected_layer(layer, step, momentum, decay); |
| | | update_connected_layer(layer); |
| | | } |
| | | } |
| | | } |
| | |
| | | } else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == DROPOUT){ |
| | | return get_network_output_layer(net, i-1); |
| | | } else if(net.types[i] == FREEWEIGHT){ |
| | | return get_network_output_layer(net, i-1); |
| | | } else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } |
| | | return 0; |
| | | } |
| | | float *get_network_output(network net) |
| | | { |
| | | return get_network_output_layer(net, net.n-1); |
| | | int i; |
| | | for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break; |
| | | return get_network_output_layer(net, i); |
| | | } |
| | | |
| | | float *get_network_delta_layer(network net, int i) |
| | |
| | | } else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == DROPOUT){ |
| | | return get_network_delta_layer(net, i-1); |
| | | } else if(net.types[i] == FREEWEIGHT){ |
| | | return get_network_delta_layer(net, i-1); |
| | | } else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.delta; |
| | |
| | | return 0; |
| | | } |
| | | |
| | | float get_network_cost(network net) |
| | | { |
| | | if(net.types[net.n-1] == COST){ |
| | | return ((cost_layer *)net.layers[net.n-1])->output[0]; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | float *get_network_delta(network net) |
| | | { |
| | | return get_network_delta_layer(net, net.n-1); |
| | |
| | | float sum = 0; |
| | | float *delta = get_network_delta(net); |
| | | float *out = get_network_output(net); |
| | | int i, k = get_network_output_size(net); |
| | | for(i = 0; i < k; ++i){ |
| | | printf("%f, ", out[i]); |
| | | int i; |
| | | for(i = 0; i < get_network_output_size(net)*net.batch; ++i){ |
| | | //if(i %get_network_output_size(net) == 0) printf("\n"); |
| | | //printf("%5.2f %5.2f, ", out[i], truth[i]); |
| | | //if(i == get_network_output_size(net)) printf("\n"); |
| | | delta[i] = truth[i] - out[i]; |
| | | //printf("%.10f, ", out[i]); |
| | | sum += delta[i]*delta[i]; |
| | | } |
| | | printf("\n"); |
| | | //printf("\n"); |
| | | return sum; |
| | | } |
| | | |
| | |
| | | return max_index(out, k); |
| | | } |
| | | |
| | | float backward_network(network net, float *input, float *truth) |
| | | void backward_network(network net, float *input) |
| | | { |
| | | float error = calculate_error_network(net, truth); |
| | | int i; |
| | | float *prev_input; |
| | | float *prev_delta; |
| | |
| | | } |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | learn_convolutional_layer(layer); |
| | | //learn_convolutional_layer(layer); |
| | | if(i != 0) backward_convolutional_layer(layer, prev_delta); |
| | | backward_convolutional_layer(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta); |
| | | if(i != 0) backward_maxpool_layer(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta); |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta); |
| | | if(i != 0) backward_softmax_layer(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | learn_connected_layer(layer, prev_input); |
| | | if(i != 0) backward_connected_layer(layer, prev_input, prev_delta); |
| | | backward_connected_layer(layer, prev_input, prev_delta); |
| | | } |
| | | else if(net.types[i] == COST){ |
| | | cost_layer layer = *(cost_layer *)net.layers[i]; |
| | | backward_cost_layer(layer, prev_input, prev_delta); |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | #ifdef GPU |
| | | float train_network_datum_gpu(network net, float *x, float *y) |
| | | { |
| | | int x_size = get_network_input_size(net)*net.batch; |
| | | int y_size = get_network_output_size(net)*net.batch; |
| | | clock_t time = clock(); |
| | | if(!*net.input_cl){ |
| | | *net.input_cl = cl_make_array(x, x_size); |
| | | *net.truth_cl = cl_make_array(y, y_size); |
| | | }else{ |
| | | cl_write_array(*net.input_cl, x, x_size); |
| | | cl_write_array(*net.truth_cl, y, y_size); |
| | | } |
| | | //printf("trans %f\n", sec(clock()-time)); |
| | | time = clock(); |
| | | forward_network_gpu(net, *net.input_cl, *net.truth_cl, 1); |
| | | //printf("forw %f\n", sec(clock()-time)); |
| | | time = clock(); |
| | | backward_network_gpu(net, *net.input_cl); |
| | | //printf("back %f\n", sec(clock()-time)); |
| | | time = clock(); |
| | | float error = get_network_cost(net); |
| | | update_network_gpu(net); |
| | | //printf("updt %f\n", sec(clock()-time)); |
| | | time = clock(); |
| | | return error; |
| | | } |
| | | |
| | | float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay) |
| | | float train_network_sgd_gpu(network net, data d, int n) |
| | | { |
| | | forward_network(net, x); |
| | | int batch = net.batch; |
| | | float *X = calloc(batch*d.X.cols, sizeof(float)); |
| | | float *y = calloc(batch*d.y.cols, sizeof(float)); |
| | | |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | get_random_batch(d, batch, X, y); |
| | | float err = train_network_datum_gpu(net, X, y); |
| | | sum += err; |
| | | } |
| | | free(X); |
| | | free(y); |
| | | return (float)sum/(n*batch); |
| | | } |
| | | |
| | | float train_network_data_gpu(network net, data d, int n) |
| | | { |
| | | int batch = net.batch; |
| | | float *X = calloc(batch*d.X.cols, sizeof(float)); |
| | | float *y = calloc(batch*d.y.cols, sizeof(float)); |
| | | |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | get_next_batch(d, batch, i*batch, X, y); |
| | | float err = train_network_datum_gpu(net, X, y); |
| | | sum += err; |
| | | } |
| | | free(X); |
| | | free(y); |
| | | return (float)sum/(n*batch); |
| | | } |
| | | #endif |
| | | |
| | | |
| | | float train_network_datum(network net, float *x, float *y) |
| | | { |
| | | forward_network(net, x, y, 1); |
| | | //int class = get_predicted_class_network(net); |
| | | float error = backward_network(net, x, y); |
| | | update_network(net, step, momentum, decay); |
| | | backward_network(net, x); |
| | | float error = get_network_cost(net); |
| | | update_network(net); |
| | | //return (y[class]?1:0); |
| | | return error; |
| | | } |
| | | |
| | | float train_network_sgd(network net, data d, int n, float step, float momentum,float decay) |
| | | float train_network_sgd(network net, data d, int n) |
| | | { |
| | | int i; |
| | | float error = 0; |
| | | int correct = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand()%d.X.rows; |
| | | error += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay); |
| | | float *y = d.y.vals[index]; |
| | | int class = get_predicted_class_network(net); |
| | | correct += (y[class]?1:0); |
| | | //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]); |
| | | //if((i+1)%10 == 0){ |
| | | // printf("%d: %f\n", (i+1), (float)correct/(i+1)); |
| | | //} |
| | | } |
| | | printf("Accuracy: %f\n",(float) correct/n); |
| | | return error/n; |
| | | } |
| | | float train_network_batch(network net, data d, int n, float step, float momentum,float decay) |
| | | { |
| | | int i; |
| | | int correct = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | int index = rand()%d.X.rows; |
| | | float *x = d.X.vals[index]; |
| | | float *y = d.y.vals[index]; |
| | | forward_network(net, x); |
| | | int class = get_predicted_class_network(net); |
| | | backward_network(net, x, y); |
| | | correct += (y[class]?1:0); |
| | | } |
| | | update_network(net, step, momentum, decay); |
| | | return (float)correct/n; |
| | | int batch = net.batch; |
| | | float *X = calloc(batch*d.X.cols, sizeof(float)); |
| | | float *y = calloc(batch*d.y.cols, sizeof(float)); |
| | | |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | get_random_batch(d, batch, X, y); |
| | | float err = train_network_datum(net, X, y); |
| | | sum += err; |
| | | } |
| | | free(X); |
| | | free(y); |
| | | return (float)sum/(n*batch); |
| | | } |
| | | float train_network_batch(network net, data d, int n) |
| | | { |
| | | int i,j; |
| | | float sum = 0; |
| | | int batch = 2; |
| | | for(i = 0; i < n; ++i){ |
| | | for(j = 0; j < batch; ++j){ |
| | | int index = rand()%d.X.rows; |
| | | float *x = d.X.vals[index]; |
| | | float *y = d.y.vals[index]; |
| | | forward_network(net, x, y, 1); |
| | | backward_network(net, x); |
| | | sum += get_network_cost(net); |
| | | } |
| | | update_network(net); |
| | | } |
| | | return (float)sum/(n*batch); |
| | | } |
| | | |
| | | |
| | | void train_network(network net, data d, float step, float momentum, float decay) |
| | | void train_network(network net, data d) |
| | | { |
| | | int i; |
| | | int correct = 0; |
| | | for(i = 0; i < d.X.rows; ++i){ |
| | | correct += train_network_datum(net, d.X.vals[i], d.y.vals[i], step, momentum, decay); |
| | | correct += train_network_datum(net, d.X.vals[i], d.y.vals[i]); |
| | | if(i%100 == 0){ |
| | | visualize_network(net); |
| | | cvWaitKey(10); |
| | |
| | | } |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | printf("Accuracy: %f\n", (float)correct/d.X.rows); |
| | | fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows); |
| | | } |
| | | |
| | | int get_network_input_size_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.h*layer.w*layer.c; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.h*layer.w*layer.c; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } else if(net.types[i] == DROPOUT){ |
| | | dropout_layer layer = *(dropout_layer *) net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | else if(net.types[i] == FREEWEIGHT){ |
| | | freeweight_layer layer = *(freeweight_layer *) net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | int get_network_output_size_layer(network net, int i) |
| | |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.outputs; |
| | | } |
| | | else if(net.types[i] == DROPOUT){ |
| | | dropout_layer layer = *(dropout_layer *) net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | else if(net.types[i] == FREEWEIGHT){ |
| | | freeweight_layer layer = *(freeweight_layer *) net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | |
| | | return 0; |
| | | } |
| | | |
| | | int reset_network_size(network net, int h, int w, int c) |
| | | int resize_network(network net, int h, int w, int c) |
| | | { |
| | | int i; |
| | | for (i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer *layer = (convolutional_layer *)net.layers[i]; |
| | | layer->h = h; |
| | | layer->w = w; |
| | | layer->c = c; |
| | | resize_convolutional_layer(layer, h, w, c); |
| | | image output = get_convolutional_image(*layer); |
| | | h = output.h; |
| | | w = output.w; |
| | | c = output.c; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | }else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer *layer = (maxpool_layer *)net.layers[i]; |
| | | layer->h = h; |
| | | layer->w = w; |
| | | layer->c = c; |
| | | resize_maxpool_layer(layer, h, w, c); |
| | | image output = get_maxpool_image(*layer); |
| | | h = output.h; |
| | | w = output.w; |
| | | c = output.c; |
| | | }else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer *layer = (normalization_layer *)net.layers[i]; |
| | | resize_normalization_layer(layer, h, w, c); |
| | | image output = get_normalization_image(*layer); |
| | | h = output.h; |
| | | w = output.w; |
| | | c = output.c; |
| | | }else{ |
| | | error("Cannot resize this type of layer"); |
| | | } |
| | | } |
| | | return 0; |
| | |
| | | |
| | | int get_network_output_size(network net) |
| | | { |
| | | int i = net.n-1; |
| | | int i; |
| | | for(i = net.n-1; i > 0; --i) if(net.types[i] != COST) break; |
| | | return get_network_output_size_layer(net, i); |
| | | } |
| | | |
| | | int get_network_input_size(network net) |
| | | { |
| | | return get_network_input_size_layer(net, 0); |
| | | } |
| | | |
| | | image get_network_image_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return get_maxpool_image(layer); |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | return get_normalization_image(layer); |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | return get_crop_image(layer); |
| | | } |
| | | return make_empty_image(0,0,0); |
| | | } |
| | | |
| | |
| | | |
| | | void visualize_network(network net) |
| | | { |
| | | image *prev = 0; |
| | | int i; |
| | | char buff[256]; |
| | | //show_image(get_network_image_layer(net, 0), "Crop"); |
| | | for(i = 0; i < net.n; ++i){ |
| | | sprintf(buff, "Layer %d", i); |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | visualize_convolutional_layer(layer, buff); |
| | | prev = visualize_convolutional_layer(layer, buff, prev); |
| | | } |
| | | if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | visualize_normalization_layer(layer, buff); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void top_predictions(network net, int n, int *index) |
| | | { |
| | | int i,j; |
| | | int k = get_network_output_size(net); |
| | | float *out = get_network_output(net); |
| | | float thresh = FLT_MAX; |
| | | for(i = 0; i < n; ++i){ |
| | | float max = -FLT_MAX; |
| | | int max_i = -1; |
| | | for(j = 0; j < k; ++j){ |
| | | float val = out[j]; |
| | | if(val > max && val < thresh){ |
| | | max = val; |
| | | max_i = j; |
| | | } |
| | | } |
| | | index[i] = max_i; |
| | | thresh = max; |
| | | } |
| | | } |
| | | |
| | | float *network_predict(network net, float *input) |
| | | { |
| | | forward_network(net, input); |
| | | forward_network(net, input, 0, 0); |
| | | float *out = get_network_output(net); |
| | | return out; |
| | | } |
| | | |
| | | matrix network_predict_data(network net, data test) |
| | | matrix network_predict_data_multi(network net, data test, int n) |
| | | { |
| | | int i,j; |
| | | int i,j,b,m; |
| | | int k = get_network_output_size(net); |
| | | matrix pred = make_matrix(test.X.rows, k); |
| | | for(i = 0; i < test.X.rows; ++i){ |
| | | float *out = network_predict(net, test.X.vals[i]); |
| | | for(j = 0; j < k; ++j){ |
| | | pred.vals[i][j] = out[j]; |
| | | float *X = calloc(net.batch*test.X.rows, sizeof(float)); |
| | | for(i = 0; i < test.X.rows; i += net.batch){ |
| | | for(b = 0; b < net.batch; ++b){ |
| | | if(i+b == test.X.rows) break; |
| | | memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); |
| | | } |
| | | for(m = 0; m < n; ++m){ |
| | | float *out = network_predict(net, X); |
| | | for(b = 0; b < net.batch; ++b){ |
| | | if(i+b == test.X.rows) break; |
| | | for(j = 0; j < k; ++j){ |
| | | pred.vals[i+b][j] += out[j+b*k]/n; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | free(X); |
| | | return pred; |
| | | } |
| | | |
| | | matrix network_predict_data(network net, data test) |
| | | { |
| | | int i,j,b; |
| | | int k = get_network_output_size(net); |
| | | matrix pred = make_matrix(test.X.rows, k); |
| | | float *X = calloc(net.batch*test.X.rows, sizeof(float)); |
| | | for(i = 0; i < test.X.rows; i += net.batch){ |
| | | for(b = 0; b < net.batch; ++b){ |
| | | if(i+b == test.X.rows) break; |
| | | memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); |
| | | } |
| | | float *out = network_predict(net, X); |
| | | for(b = 0; b < net.batch; ++b){ |
| | | if(i+b == test.X.rows) break; |
| | | for(j = 0; j < k; ++j){ |
| | | pred.vals[i+b][j] = out[j+b*k]; |
| | | } |
| | | } |
| | | } |
| | | free(X); |
| | | return pred; |
| | | } |
| | | |
| | |
| | | image m = get_maxpool_image(layer); |
| | | n = m.h*m.w*m.c; |
| | | } |
| | | else if(net.types[i] == CROP){ |
| | | crop_layer layer = *(crop_layer *)net.layers[i]; |
| | | output = layer.output; |
| | | image m = get_crop_image(layer); |
| | | n = m.h*m.w*m.c; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | output = layer.output; |
| | |
| | | return acc; |
| | | } |
| | | |
| | | float network_accuracy_multi(network net, data d, int n) |
| | | { |
| | | matrix guess = network_predict_data_multi(net, d, n); |
| | | float acc = matrix_accuracy(d.y, guess); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |
| | | |
| | | |