Alexey
2017-12-28 1d264dcb2bc25ad78f4331b2e9f642569ba1fa8f
src/region_layer.c
@@ -9,6 +9,8 @@
#include <string.h>
#include <stdlib.h>
#define DOABS 1
region_layer make_region_layer(int batch, int w, int h, int n, int classes, int coords)
{
    region_layer l = {0};
@@ -42,25 +44,43 @@
    l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs);
#endif
    fprintf(stderr, "Region Layer\n");
    fprintf(stderr, "detection\n");
    srand(0);
    return l;
}
#define LOG 1
void resize_region_layer(layer *l, int w, int h)
{
    l->w = w;
    l->h = h;
    l->outputs = h*w*l->n*(l->classes + l->coords + 1);
    l->inputs = l->outputs;
    l->output = realloc(l->output, l->batch*l->outputs*sizeof(float));
    l->delta = realloc(l->delta, l->batch*l->outputs*sizeof(float));
#ifdef GPU
    cuda_free(l->delta_gpu);
    cuda_free(l->output_gpu);
    l->delta_gpu =     cuda_make_array(l->delta, l->batch*l->outputs);
    l->output_gpu =    cuda_make_array(l->output, l->batch*l->outputs);
#endif
}
box get_region_box(float *x, float *biases, int n, int index, int i, int j, int w, int h)
{
    box b;
    b.x = (i + .5)/w + x[index + 0] * biases[2*n];
    b.y = (j + .5)/h + x[index + 1] * biases[2*n + 1];
    if(LOG){
        b.x = (i + logistic_activate(x[index + 0])) / w;
        b.y = (j + logistic_activate(x[index + 1])) / h;
    }
    b.x = (i + logistic_activate(x[index + 0])) / w;
    b.y = (j + logistic_activate(x[index + 1])) / h;
    b.w = exp(x[index + 2]) * biases[2*n];
    b.h = exp(x[index + 3]) * biases[2*n+1];
    if(DOABS){
        b.w = exp(x[index + 2]) * biases[2*n]   / w;
        b.h = exp(x[index + 3]) * biases[2*n+1] / h;
    }
    return b;
}
@@ -69,21 +89,17 @@
    box pred = get_region_box(x, biases, n, index, i, j, w, h);
    float iou = box_iou(pred, truth);
    float tx = (truth.x - (i + .5)/w) / biases[2*n];
    float ty = (truth.y - (j + .5)/h) / biases[2*n + 1];
    if(LOG){
        tx = (truth.x*w - i);
        ty = (truth.y*h - j);
    }
    float tx = (truth.x*w - i);
    float ty = (truth.y*h - j);
    float tw = log(truth.w / biases[2*n]);
    float th = log(truth.h / biases[2*n + 1]);
    delta[index + 0] = scale * (tx - x[index + 0]);
    delta[index + 1] = scale * (ty - x[index + 1]);
    if(LOG){
        delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0]));
        delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1]));
    if(DOABS){
        tw = log(truth.w*w / biases[2*n]);
        th = log(truth.h*h / biases[2*n + 1]);
    }
    delta[index + 0] = scale * (tx - logistic_activate(x[index + 0])) * logistic_gradient(logistic_activate(x[index + 0]));
    delta[index + 1] = scale * (ty - logistic_activate(x[index + 1])) * logistic_gradient(logistic_activate(x[index + 1]));
    delta[index + 2] = scale * (tw - x[index + 2]);
    delta[index + 3] = scale * (th - x[index + 3]);
    return iou;
@@ -130,18 +146,34 @@
    int i,j,b,t,n;
    int size = l.coords + l.classes + 1;
    memcpy(l.output, state.input, l.outputs*l.batch*sizeof(float));
    reorg(l.output, l.w*l.h, size*l.n, l.batch, 1);
    #ifndef GPU
    flatten(l.output, l.w*l.h, size*l.n, l.batch, 1);
    #endif
    for (b = 0; b < l.batch; ++b){
        for(i = 0; i < l.h*l.w*l.n; ++i){
            int index = size*i + b*l.outputs;
            l.output[index + 4] = logistic_activate(l.output[index + 4]);
            if(l.softmax_tree){
        }
    }
#ifndef GPU
    if (l.softmax_tree){
        for (b = 0; b < l.batch; ++b){
            for(i = 0; i < l.h*l.w*l.n; ++i){
                int index = size*i + b*l.outputs;
                softmax_tree(l.output + index + 5, 1, 0, 1, l.softmax_tree, l.output + index + 5);
            } else if(l.softmax){
            }
        }
    } else if (l.softmax){
        for (b = 0; b < l.batch; ++b){
            for(i = 0; i < l.h*l.w*l.n; ++i){
                int index = size*i + b*l.outputs;
                softmax(l.output + index + 5, l.classes, 1, l.output + index + 5);
            }
        }
    }
#endif
    if(!state.train) return;
    memset(l.delta, 0, l.outputs * l.batch * sizeof(float));
    float avg_iou = 0;
@@ -153,6 +185,33 @@
    int class_count = 0;
    *(l.cost) = 0;
    for (b = 0; b < l.batch; ++b) {
        if(l.softmax_tree){
            int onlyclass = 0;
            for(t = 0; t < 30; ++t){
                box truth = float_to_box(state.truth + t*5 + b*l.truths);
                if(!truth.x) break;
                int class = state.truth[t*5 + b*l.truths + 4];
                float maxp = 0;
                int maxi = 0;
                if(truth.x > 100000 && truth.y > 100000){
                    for(n = 0; n < l.n*l.w*l.h; ++n){
                        int index = size*n + b*l.outputs + 5;
                        float scale =  l.output[index-1];
                        float p = scale*get_hierarchy_probability(l.output + index, l.softmax_tree, class);
                        if(p > maxp){
                            maxp = p;
                            maxi = n;
                        }
                    }
                    int index = size*maxi + b*l.outputs + 5;
                    delta_region_class(l.output, l.delta, index, class, l.classes, l.softmax_tree, l.class_scale, &avg_cat);
                    ++class_count;
                    onlyclass = 1;
                    break;
                }
            }
            if(onlyclass) continue;
        }
        for (j = 0; j < l.h; ++j) {
            for (i = 0; i < l.w; ++i) {
                for (n = 0; n < l.n; ++n) {
@@ -188,11 +247,11 @@
                        truth.y = (j + .5)/l.h;
                        truth.w = l.biases[2*n];
                        truth.h = l.biases[2*n+1];
                        if(DOABS){
                            truth.w = l.biases[2*n]/l.w;
                            truth.h = l.biases[2*n+1]/l.h;
                        }
                        delta_region_box(truth, l.output, l.biases, n, index, i, j, l.w, l.h, l.delta, .01);
                        //l.delta[index + 0] = .1 * (0 - l.output[index + 0]);
                        //l.delta[index + 1] = .1 * (0 - l.output[index + 1]);
                        //l.delta[index + 2] = .1 * (0 - l.output[index + 2]);
                        //l.delta[index + 3] = .1 * (0 - l.output[index + 3]);
                    }
                }
            }
@@ -217,6 +276,10 @@
                if(l.bias_match){
                    pred.w = l.biases[2*n];
                    pred.h = l.biases[2*n+1];
                    if(DOABS){
                        pred.w = l.biases[2*n]/l.w;
                        pred.h = l.biases[2*n+1]/l.h;
                    }
                }
                //printf("pred: (%f, %f) %f x %f\n", pred.x, pred.y, pred.w, pred.h);
                pred.x = 0;
@@ -250,7 +313,9 @@
        }
    }
    //printf("\n");
    reorg(l.delta, l.w*l.h, size*l.n, l.batch, 0);
    #ifndef GPU
    flatten(l.delta, l.w*l.h, size*l.n, l.batch, 0);
    #endif
    *(l.cost) = pow(mag_array(l.delta, l.outputs * l.batch), 2);
    printf("Region Avg IOU: %f, Class: %f, Obj: %f, No Obj: %f, Avg Recall: %f,  count: %d\n", avg_iou/count, avg_cat/class_count, avg_obj/count, avg_anyobj/(l.w*l.h*l.n*l.batch), recall/count, count);
}
@@ -260,7 +325,7 @@
    axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1);
}
void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness)
void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness, int *map)
{
    int i,j,n;
    float *predictions = l.output;
@@ -284,16 +349,23 @@
                hierarchy_predictions(predictions + class_index, l.classes, l.softmax_tree, 0);
                int found = 0;
                for(j = l.classes - 1; j >= 0; --j){
                    if(!found && predictions[class_index + j] > .5){
                        found = 1;
                    } else {
                        predictions[class_index + j] = 0;
                if(map){
                    for(j = 0; j < 200; ++j){
                        float prob = scale*predictions[class_index+map[j]];
                        probs[index][j] = (prob > thresh) ? prob : 0;
                    }
                    float prob = predictions[class_index+j];
                    probs[index][j] = (scale > thresh) ? prob : 0;
                } else {
                    for(j = l.classes - 1; j >= 0; --j){
                        if(!found && predictions[class_index + j] > .5){
                            found = 1;
                        } else {
                            predictions[class_index + j] = 0;
                        }
                        float prob = predictions[class_index+j];
                        probs[index][j] = (scale > thresh) ? prob : 0;
                    }
                }
            }else{
            } else {
                for(j = 0; j < l.classes; ++j){
                    float prob = scale*predictions[class_index+j];
                    probs[index][j] = (prob > thresh) ? prob : 0;
@@ -316,6 +388,18 @@
       return;
       }
     */
    flatten_ongpu(state.input, l.h*l.w, l.n*(l.coords + l.classes + 1), l.batch, 1, l.output_gpu);
    if(l.softmax_tree){
        int i;
        int count = 5;
        for (i = 0; i < l.softmax_tree->groups; ++i) {
            int group_size = l.softmax_tree->group_size[i];
            softmax_gpu(l.output_gpu+count, group_size, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + count);
            count += group_size;
        }
    }else if (l.softmax){
        softmax_gpu(l.output_gpu+5, l.classes, l.classes + 5, l.w*l.h*l.n*l.batch, 1, l.output_gpu + 5);
    }
    float *in_cpu = calloc(l.batch*l.inputs, sizeof(float));
    float *truth_cpu = 0;
@@ -324,22 +408,22 @@
        truth_cpu = calloc(num_truth, sizeof(float));
        cuda_pull_array(state.truth, truth_cpu, num_truth);
    }
    cuda_pull_array(state.input, in_cpu, l.batch*l.inputs);
    cuda_pull_array(l.output_gpu, in_cpu, l.batch*l.inputs);
    network_state cpu_state = state;
    cpu_state.train = state.train;
    cpu_state.truth = truth_cpu;
    cpu_state.input = in_cpu;
    forward_region_layer(l, cpu_state);
    cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
    //cuda_push_array(l.output_gpu, l.output, l.batch*l.outputs);
    free(cpu_state.input);
    if(!state.train) return;
    cuda_push_array(l.delta_gpu, l.delta, l.batch*l.outputs);
    if(cpu_state.truth) free(cpu_state.truth);
}
void backward_region_layer_gpu(region_layer l, network_state state)
{
    axpy_ongpu(l.batch*l.outputs, 1, l.delta_gpu, 1, state.delta, 1);
    //copy_ongpu(l.batch*l.inputs, l.delta_gpu, 1, state.delta, 1);
    flatten_ongpu(l.delta_gpu, l.h*l.w, l.n*(l.coords + l.classes + 1), l.batch, 0, state.delta);
}
#endif