| | |
| | | } |
| | | |
| | | |
| | | void convolution_2d(int w, int h, int ksize, int n, int c, int pad, int stride, |
| | | void convolution_2d_old(int w, int h, int ksize, int n, int c, int pad, int stride, |
| | | float *weights, float *input, float *output) |
| | | { |
| | | int out_h = (h + 2 * pad - ksize) / stride + 1; // output_height=input_height for stride=1 and pad=1 |
| | |
| | | } |
| | | } |
| | | |
| | | void convolution_2d(int w, int h, int ksize, int n, int c, int pad, int stride, |
| | | float *weights, float *input, float *output, float *mean) |
| | | { |
| | | int out_h = (h + 2 * pad - ksize) / stride + 1; // output_height=input_height for stride=1 and pad=1 |
| | | int out_w = (w + 2 * pad - ksize) / stride + 1; // output_width=input_width for stride=1 and pad=1 |
| | | int i, f, j; |
| | | |
| | | #if defined(_OPENMP) |
| | | static int max_num_threads = 0; |
| | | if (max_num_threads == 0) { |
| | | max_num_threads = omp_get_max_threads(); |
| | | omp_set_num_threads(4);// max_num_threads / 2); |
| | | } |
| | | #endif |
| | | |
| | | //convolution_2d_old(w, h, ksize, n, c, pad, stride, weights, input, output); |
| | | |
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| | | for (i = 0; i < ksize*ksize*n*c; i+=8) { |
| | | *((__m256*)&weights[i]) = _mm256_and_ps(*((__m256*)&weights[i]), _mm256_castsi256_ps(all256_sing1)); |
| | | } |
| | | |
| | | for (i = 0; i < w*h*c; i += 8) { |
| | | //*((__m256*)&input[i]) = _mm256_and_ps(*((__m256*)&input[i]), _mm256_castsi256_ps(all256_sing1)); |
| | | } |
| | | |
| | | |
| | | __m256i all256_last_zero = _mm256_set1_epi32(0xFFFFFFFF); |
| | | all256_last_zero.m256i_i32[7] = 0; |
| | | |
| | | __m256i idx256 = _mm256_set_epi32(0, 7, 6, 5, 4, 3, 2, 1); |
| | | //__m256 all256_sing1 = _mm256_set1_ps(0x80000000); |
| | | __m256 all256_one = _mm256_set1_ps(1); |
| | | __m256i all256i_one = _mm256_set1_epi32(1); |
| | | |
| | | ///__m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i])); |
| | | ///__m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats |
| | | |
| | | int fil; |
| | | // filter index |
| | | #pragma omp parallel for // "omp parallel for" - automatic parallelization of loop by using OpenMP |
| | | for (fil = 0; fil < n; ++fil) { |
| | | int chan, y, x, f_y, f_x; |
| | | float cur_mean = fabs(mean[fil]); |
| | | __m256 mean256 = _mm256_set1_ps(cur_mean); |
| | | // channel index |
| | | //for (chan = 0; chan < c; ++chan) |
| | | // input - y |
| | | for (y = 0; y < h; ++y) |
| | | // input - x |
| | | for (x = 0; x < w-8; x+=8) |
| | | { |
| | | int const output_index = fil*w*h + y*w + x; |
| | | float sum = 0; |
| | | __m256 sum256 = _mm256_set1_ps(0); |
| | | |
| | | for (chan = 0; chan < c; ++chan) { |
| | | int const weights_pre_index = fil*c*ksize*ksize + chan*ksize*ksize; |
| | | int const input_pre_index = chan*w*h; |
| | | |
| | | |
| | | // filter - y |
| | | for (f_y = 0; f_y < ksize; ++f_y) |
| | | { |
| | | int input_y = y + f_y - pad; |
| | | //__m256 in = *((__m256*)&input[input_pre_index + input_y*w]); |
| | | if (input_y < 0 || input_y >= h) continue; |
| | | //__m256 in = _mm256_loadu_ps(&input[input_pre_index + input_y*w + x - pad]); |
| | | |
| | | // filter - x |
| | | for (f_x = 0; f_x < ksize; ++f_x) |
| | | { |
| | | int input_x = x + f_x - pad; |
| | | //if (input_y < 0 || input_x < 0 || input_y >= h || input_x >= w) continue; |
| | | |
| | | int input_index = input_pre_index + input_y*w + input_x; |
| | | int weights_index = weights_pre_index + f_y*ksize + f_x; |
| | | //if (input_y < 0 || input_y >= h) continue; |
| | | |
| | | //sum += input[input_index] * weights[weights_index]; |
| | | |
| | | __m256 in = *((__m256*)&input[input_index]); |
| | | __m256 w = _mm256_set1_ps(weights[weights_index]); |
| | | //__m256 w_sign = _mm256_and_ps(w, _mm256_castsi256_ps(all256_sing1)); // check sign in 8 x 32-bit floats |
| | | __m256 xor = _mm256_xor_ps(w, in); |
| | | //printf("\n xor1 = %f, xor2 = %f \n", xor.m256_f32[0], xor.m256_f32[1]); |
| | | //printf("\n in = %f, w = %f, xor = %f \n", in.m256_f32[0], w_sign.m256_f32[0], xor.m256_f32[0]); |
| | | |
| | | //__m256 pn1 = _mm256_and_ps(_mm256_castsi256_ps(all256i_one), xor); |
| | | |
| | | |
| | | //sum256 = xor; |
| | | sum256 = _mm256_add_ps(xor, sum256); |
| | | //printf("\n --- \n"); |
| | | //printf("\n 0 = %f, 1 = %f, 2 = %f, 3 = %f, 4 = %f, 5 = %f, 6 = %f, 7 = %f \n", in.m256_f32[0], in.m256_f32[1], in.m256_f32[2], in.m256_f32[3], in.m256_f32[4], in.m256_f32[5], in.m256_f32[6], in.m256_f32[7]); |
| | | |
| | | if (f_x < ksize-1) { |
| | | //in = _mm256_permutevar8x32_ps(in, idx256); |
| | | //in = _mm256_and_ps(in, _mm256_castsi256_ps(all256_last_zero)); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | // l.output[filters][width][height] += |
| | | // state.input[channels][width][height] * |
| | | // l.weights[filters][channels][filter_width][filter_height]; |
| | | //output[output_index] += sum; |
| | | |
| | | sum256 = _mm256_mul_ps(sum256, mean256); |
| | | //printf("\n cur_mean = %f, sum256 = %f, sum256 = %f, in = %f \n", |
| | | // cur_mean, sum256.m256_f32[0], sum256.m256_f32[1], input[input_pre_index]); |
| | | |
| | | //__m256 out = *((__m256*)&output[output_index]); |
| | | //out = _mm256_add_ps(out, sum256); |
| | | //*((__m256*)&output[output_index]) = out; |
| | | *((__m256*)&output[output_index]) = sum256; |
| | | |
| | | //_mm256_storeu_ps(&C[i*ldc + j], result256); |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | |
| | | // http://graphics.stanford.edu/~seander/bithacks.html |
| | |
| | | static int max_num_threads = 0; |
| | | if (max_num_threads == 0) { |
| | | max_num_threads = omp_get_max_threads(); |
| | | omp_set_num_threads(max_num_threads / 2); |
| | | //omp_set_num_threads(max_num_threads / 2); |
| | | } |
| | | #endif |
| | | |
| | |
| | | |
| | | |
| | | void convolution_2d(int w, int h, int ksize, int n, int c, int pad, int stride, |
| | | float *weights, float *input, float *output) |
| | | float *weights, float *input, float *output, float *mean) |
| | | { |
| | | int out_h = (h + 2 * pad - ksize) / stride + 1; // output_height=input_height for stride=1 and pad=1 |
| | | int out_w = (w + 2 * pad - ksize) / stride + 1; // output_width=input_width for stride=1 and pad=1 |