SpeedProg
2020-01-02 2292d6ff94a17c4e158c168de23cff0f62603dc1
opencv_dnn.py
@@ -89,6 +89,7 @@
            #img_art = Image.fromarray(card_img[121:580, 63:685])  # For 745*1040 size card image
            img_card = Image.fromarray(card_img)
            img_set = Image.fromarray(set_img)
            #cv2.imshow('Set' + card_names[0], set_img)
            for hs in hash_size:
                card_hash = ih.phash(img_card, hash_size=hs)
                set_hash = ih.whash(img_set, hash_size=64)
@@ -262,7 +263,7 @@
    # Find the contour
    cnts, hier = cv2.findContours(img_erode, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
    if len(cnts) == 0:
        #print('no contours')
        print('no contours')
        return []
    img_cont = cv2.cvtColor(img_erode, cv2.COLOR_GRAY2BGR)
    img_cont_base = img_cont.copy()
@@ -288,6 +289,8 @@
        size = cv2.contourArea(cnt)
        peri = cv2.arcLength(cnt, True)
        approx = cv2.approxPolyDP(cnt, 0.04 * peri, True)
        print('Base Size:', size)
        print('Len Approx:', len(approx))
        if size >= size_thresh and len(approx) == 4:
            # lets see if we got a contour very close in size as child
            if i_child != -1:
@@ -304,7 +307,7 @@
                c_cnt = c_list[0]  # the biggest child
                if debug:
                    cv2.drawContours(img_ccont, c_list[:1], -1, (0, 255, 0), 1)
                    cv2.imshow('CCont %d' % i_cnt, img_ccont)
                    cv2.imshow('CCont', img_ccont)
                c_size = cv2.contourArea(c_cnt)
                c_approx = cv2.approxPolyDP(c_cnt, 0.04 * peri, True)
                if len(c_approx) == 4 and (c_size/size) > 0.85:
@@ -412,7 +415,9 @@
    det_cards = []
    # Detect contours of all cards in the image
    cnts = find_card(img_result, size_thresh=size_thresh, debug=debug)
    print('Countours:', len(cnts))
    for i in range(len(cnts)):
        print('Contour', i)
        cnt = cnts[i]
        # For the region of the image covered by the contour, transform them into a rectangular image
        pts = np.float32([p[0] for p in cnt])
@@ -437,6 +442,7 @@
        img_set_part = img_warp[cut[0]:cut[1], cut[2]:cut[3]]
        print(img_set_part.shape)
        img_set = Image.fromarray(img_set_part.astype('uint8'), 'RGB')
        print('img set')
        if debug:
            cv2.imshow("Set Img#%d" % i, img_set_part)
@@ -485,9 +491,10 @@
            cv2.imshow('card#%d' % i, img_warp)
    if display:
        cv2.imshow('Result', img_result)
        cv2.waitKey(0)
        inp = cv2.waitKey(0)
    if out_path is not None:
        print(out_path)
        cv2.imwrite(out_path, img_result.astype(np.uint8))
    return det_cards, img_result
@@ -618,7 +625,9 @@
            print('Elapsed time: %.2f ms' % elapsed_ms)
            if out_path is not None:
                vid_writer.write(img_save.astype(np.uint8))
            cv2.waitKey(1)
            inp = cv2.waitKey(0)
            if 'q' == chr(inp & 255):
                break
    except KeyboardInterrupt:
        capture.release()
        if out_path is not None:
@@ -677,8 +686,11 @@
        capture.set(cv2.CAP_PROP_FOURCC, cv2.VideoWriter_fourcc(*"MJPG"))
        capture.set(cv2.CAP_PROP_FRAME_WIDTH, 1920)
        capture.set(cv2.CAP_PROP_FRAME_HEIGHT, 1080)
        thres = int(((1920-2*500)*(1080-2*200)*0.3))
        print('Threshold:', thres)
        detect_video(capture, card_pool, hash_size=args.hash_size, out_path='%s/result.avi' % args.out_path,
                     display=args.display, show_graph=args.show_graph, debug=args.debug, crop_x=500, crop_y=200)
                     display=args.display, show_graph=args.show_graph, debug=args.debug, crop_x=500, crop_y=200, size_thresh=thres)
        capture.release()
    else:
        # Save the detection result if args.out_path is provided