| | |
| | | int i = 0; |
| | | float mean = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | mean += abs(input[i*size + s]); |
| | | mean += fabs(input[i*size + s]); |
| | | } |
| | | mean = mean / n; |
| | | for(i = 0; i < n; ++i){ |
| | |
| | | int i = 0; |
| | | float mean = 0; |
| | | for(i = 0; i < size; ++i){ |
| | | mean += abs(weights[f*size + i]); |
| | | mean += fabs(weights[f*size + i]); |
| | | } |
| | | mean = mean / size; |
| | | for(i = 0; i < size; ++i){ |
| | |
| | | __global__ void cuda_f32_to_f16(float* input_f32, size_t size, half *output_f16) |
| | | { |
| | | int idx = blockIdx.x * blockDim.x + threadIdx.x; |
| | | if (idx < size) output_f16[idx] = input_f32[idx]; |
| | | if (idx < size) output_f16[idx] = __float2half(input_f32[idx]); |
| | | //if (idx < size) *((unsigned short *)output_f16 + idx) = __float2half(input_f32[idx]); |
| | | } |
| | | |
| | | void cuda_convert_f32_to_f16(float* input_f32, size_t size, half *output_f16) { |
| | | cuda_f32_to_f16 <<< size / BLOCK + 1, BLOCK, 0, get_cuda_stream() >>> (input_f32, size, output_f16); |
| | | void cuda_convert_f32_to_f16(float* input_f32, size_t size, float *output_f16) { |
| | | cuda_f32_to_f16 <<< size / BLOCK + 1, BLOCK, 0, get_cuda_stream() >>> (input_f32, size, (half *)output_f16); |
| | | } |
| | | |
| | | __global__ void cuda_f16_to_f32(half* input_f16, size_t size, float *output_f32) |
| | | { |
| | | int idx = blockIdx.x * blockDim.x + threadIdx.x; |
| | | if (idx < size) output_f32[idx] = input_f16[idx]; |
| | | if (idx < size) output_f32[idx] = __half2float(input_f16[idx]); |
| | | //if (idx < size) output_f32[idx] = __half2float(*((unsigned short *)input_f16 + idx)); |
| | | } |
| | | |
| | | void cuda_convert_f16_to_f32(half* input_f16, size_t size, float *output_f32) { |
| | | cuda_f16_to_f32 <<< size / BLOCK + 1, BLOCK, 0, get_cuda_stream() >>> (input_f16, size, output_f32); |
| | | void cuda_convert_f16_to_f32(float* input_f16, size_t size, float *output_f32) { |
| | | cuda_f16_to_f32 <<< size / BLOCK + 1, BLOCK, 0, get_cuda_stream() >>> ((half *)input_f16, size, output_f32); |
| | | } |
| | | |
| | | half *cuda_make_f16_from_f32_array(float *src, size_t n) |
| | |
| | | size_t size = sizeof(half)*n; |
| | | check_error(cudaMalloc((void **)&dst16, size)); |
| | | if (src) { |
| | | cuda_convert_f32_to_f16(src, n, dst16); |
| | | cuda_convert_f32_to_f16(src, n, (float *)dst16); |
| | | } |
| | | if (!dst16) error("Cuda malloc failed\n"); |
| | | return dst16; |
| | |
| | | } |
| | | |
| | | #ifdef CUDNN |
| | | //float one = 1; // alpha[0], beta[0] is float for HALF and FLOAT |
| | | float alpha = 1, beta = 0; |
| | | float one = 1; // alpha[0], beta[0] is float for HALF and FLOAT |
| | | float alpha = 1, beta = 0; |
| | | |
| | | #ifdef CUDNN_HALF |
| | | // Note: For improved performance it is advised to use beta[0] = 0.0. |
| | |
| | | // More: http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#tensor_ops |
| | | |
| | | const size_t input16_size = l.batch*l.c*l.w*l.h; |
| | | static size_t max_input16_size = input16_size; |
| | | static half* input16 = cuda_make_f16_from_f32_array(NULL, max_input16_size); |
| | | |
| | | const size_t output16_size = l.batch*l.out_c*l.out_h*l.out_w; |
| | | static size_t max_output16_size = output16_size; |
| | | static half* output16 = cuda_make_f16_from_f32_array(NULL, max_output16_size); |
| | | |
| | | if (max_input16_size < input16_size) { |
| | | max_input16_size = input16_size; |
| | | cuda_free((float *)input16); |
| | | input16 = cuda_make_f16_from_f32_array(state.input, max_input16_size); |
| | | if (*state.net.max_input16_size < input16_size) { |
| | | //printf("\n input16_size: cur = %zu \t max = %zu \n", input16_size, *state.net.max_input16_size); |
| | | *state.net.max_input16_size = input16_size; |
| | | if (*state.net.input16_gpu) cuda_free(*state.net.input16_gpu); |
| | | *state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size); |
| | | } |
| | | float *input16 = *state.net.input16_gpu; |
| | | |
| | | if (max_output16_size < output16_size) { |
| | | max_output16_size = output16_size; |
| | | cuda_free((float *)output16); |
| | | output16 = cuda_make_f16_from_f32_array(NULL, max_output16_size); |
| | | if (*state.net.max_output16_size < output16_size) { |
| | | *state.net.max_output16_size = output16_size; |
| | | if (*state.net.output16_gpu) cuda_free(*state.net.output16_gpu); |
| | | *state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size); |
| | | } |
| | | float *output16 = *state.net.output16_gpu; |
| | | |
| | | cuda_convert_f32_to_f16(state.input, input16_size, input16); |
| | | |
| | | //fill_ongpu(output16_size / 2, 0, (float *)output16, 1); |
| | | cudnnConvolutionForward(cudnn_handle(), |
| | | &alpha, |
| | | l.srcTensorDesc, |
| | |
| | | output16); |
| | | |
| | | cuda_convert_f16_to_f32(output16, output16_size, l.output_gpu); |
| | | |
| | | #else |
| | | |
| | | cudnnConvolutionForward(cudnn_handle(), |
| | | &alpha, |
| | | &one, |
| | | l.srcTensorDesc, |
| | | state.input, |
| | | l.weightDesc, |
| | |
| | | l.fw_algo, |
| | | state.workspace, |
| | | l.workspace_size, |
| | | &beta, |
| | | &one, |
| | | l.dstTensorDesc, |
| | | l.output_gpu); |
| | | #endif |
| | |
| | | |
| | | if (l.batch_normalize) { |
| | | forward_batchnorm_layer_gpu(l, state); |
| | | } |
| | | add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); |
| | | } |
| | | else { |
| | | add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); |
| | | } |
| | | |
| | | activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); |
| | | //if(l.dot > 0) dot_error_gpu(l); |
| | |
| | | |
| | | if(l.xnor) state.input = l.binary_input_gpu; |
| | | #ifdef CUDNN |
| | | float one = 1; |
| | | float one = 1; |
| | | float alpha = 1, beta = 0; |
| | | |
| | | #ifdef CUDNN_HALF |
| | | |
| | | const size_t input16_size = l.batch*l.c*l.w*l.h; |
| | | const size_t delta16_size = l.batch*l.n*l.out_w*l.out_h; |
| | | |
| | | if (*state.net.max_input16_size < input16_size) { |
| | | *state.net.max_input16_size = input16_size; |
| | | if(*state.net.input16_gpu) cuda_free(*state.net.input16_gpu); |
| | | *state.net.input16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_input16_size); |
| | | } |
| | | float *input16 = *state.net.input16_gpu; |
| | | |
| | | if (*state.net.max_output16_size < delta16_size) { |
| | | *state.net.max_output16_size = delta16_size; |
| | | if(*state.net.output16_gpu) cuda_free(*state.net.output16_gpu); |
| | | *state.net.output16_gpu = (float *)cuda_make_f16_from_f32_array(NULL, *state.net.max_output16_size); |
| | | } |
| | | float *delta16 = *state.net.output16_gpu; |
| | | |
| | | cuda_convert_f32_to_f16(state.input, input16_size, input16); |
| | | cuda_convert_f32_to_f16(l.delta_gpu, delta16_size, delta16); |
| | | |
| | | // convert input: state.input (x), l.delta_gpu (y) from fp32 to fp16 |
| | | // get output: l.weight_updates_gpu (dw) and convert it to fp32 (ONLY if it is fp16) |
| | | |
| | | // calculate conv weight updates |
| | | // Already: l.weight_updates_gpu = (l.weight_updates_gpu - l.weight*decay*batch*subdivision)*momentum |
| | | // so we should copy f32 to f16, or compute: f16=(w_up - w*d*b*s)*m |
| | | cuda_convert_f32_to_f16(l.weight_updates_gpu, l.c*l.n*l.size*l.size, l.weight_updates_gpu16); |
| | | |
| | | cudnnConvolutionBackwardFilter(cudnn_handle(), |
| | | &one, |
| | | l.srcTensorDesc, |
| | | input16, //state.input, |
| | | l.ddstTensorDesc, |
| | | delta16, //l.delta_gpu, |
| | | l.convDesc, |
| | | l.bf_algo, |
| | | state.workspace, |
| | | l.workspace_size, |
| | | &one, |
| | | l.dweightDesc, |
| | | l.weight_updates_gpu16); // l.weight_updates_gpu); |
| | | |
| | | cuda_convert_f16_to_f32(l.weight_updates_gpu16, l.c*l.n*l.size*l.size, l.weight_updates_gpu); |
| | | |
| | | if (state.delta) { |
| | | if (l.binary || l.xnor) swap_binary(&l); |
| | | |
| | | // http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData |
| | | // calculate delta for the next layer |
| | | // convert input: l.weights_gpu (w), l.delta_gpu (dy) from fp32 to fp16 |
| | | // get output: state.delta (dx) and convert it to fp32 (ONLY if it is fp16) |
| | | cudnnConvolutionBackwardData(cudnn_handle(), |
| | | &alpha, |
| | | l.weightDesc, |
| | | l.weights_gpu16, //l.weights_gpu, |
| | | l.ddstTensorDesc, |
| | | delta16, //l.delta_gpu, |
| | | l.convDesc, |
| | | l.bd_algo, |
| | | state.workspace, |
| | | l.workspace_size, |
| | | &beta, |
| | | l.dsrcTensorDesc, |
| | | input16); // state.delta); |
| | | |
| | | cuda_convert_f16_to_f32(input16, input16_size, state.delta); |
| | | |
| | | if (l.binary || l.xnor) swap_binary(&l); |
| | | if (l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta); |
| | | } |
| | | #else // CUDNN_HALF |
| | | |
| | | // calculate conv weight updates |
| | | // if used: beta=1 then loss decreases faster |
| | | cudnnConvolutionBackwardFilter(cudnn_handle(), |
| | | &one, |
| | | l.srcTensorDesc, |
| | |
| | | |
| | | if(state.delta){ |
| | | if(l.binary || l.xnor) swap_binary(&l); |
| | | // http://docs.nvidia.com/deeplearning/sdk/cudnn-developer-guide/index.html#cudnnConvolutionBackwardData |
| | | // calculate delta for the next layer |
| | | cudnnConvolutionBackwardData(cudnn_handle(), |
| | | &one, |
| | | l.weightDesc, |
| | |
| | | if(l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta); |
| | | } |
| | | |
| | | #else |
| | | #endif // CUDNN_HALF |
| | | |
| | | #else // CUDNN |
| | | int m = l.n; |
| | | int n = l.size*l.size*l.c; |
| | | int k = l.out_w*l.out_h; |
| | |
| | | { |
| | | cuda_push_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size); |
| | | #ifdef CUDNN_HALF |
| | | cuda_convert_f32_to_f16(layer.weights_gpu, layer.c*layer.n*layer.size*layer.size, (half *)layer.weights_gpu16); |
| | | cuda_convert_f32_to_f16(layer.weights_gpu, layer.c*layer.n*layer.size*layer.size, layer.weights_gpu16); |
| | | #endif |
| | | cuda_push_array(layer.biases_gpu, layer.biases, layer.n); |
| | | cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size); |
| | |
| | | adam_gpu(size, layer.weights_gpu, layer.m_gpu, layer.v_gpu, layer.B1, layer.B2, learning_rate/batch, layer.eps, layer.t+1); |
| | | fill_ongpu(size, 0, layer.weight_updates_gpu, 1); |
| | | }else{ |
| | | // update weights: |
| | | // weights_gpu = weights_gpu*(1 - decay*lr) + weight_updates_gpu*lr / (batch*subdivision) = |
| | | // weights_gpu*(1 - 0.0005*0.001) + weight_updates_gpu*0.001/(64*8) = |
| | | // weights_gpu * 0.999 999 5 + weight_updates_gpu * 0.000 001 953125 |
| | | // |
| | | // weight_updates_gpu = (weight_updates_gpu - weights_gpu*decay*batch*subdivision)*momentum = |
| | | // (weight_updates_gpu - weights_gpu * 0.0005 * 64 * 8) * 0.9 = |
| | | // weight_updates_gpu*0.9 - weights_gpu*0.2304 |
| | | axpy_ongpu(size, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); |
| | | axpy_ongpu(size, learning_rate/batch, layer.weight_updates_gpu, 1, layer.weights_gpu, 1); |
| | | scal_ongpu(size, momentum, layer.weight_updates_gpu, 1); |