| | |
| | | |
| | | #define FRAMES 3 |
| | | |
| | | int max_objects() { return C_SHARP_MAX_OBJECTS; } |
| | | |
| | | static Detector* detector; |
| | | //static std::unique_ptr<Detector> detector; |
| | | |
| | | int init(const char *configurationFilename, const char *weightsFilename, int gpu) { |
| | | std::string configurationFilenameString; |
| | | configurationFilenameString = configurationFilename; |
| | | std::string weightsFilenameString; |
| | | weightsFilenameString = weightsFilename; |
| | | |
| | | detector = new Detector(configurationFilenameString, weightsFilenameString, gpu); |
| | | return 1; |
| | | } |
| | | |
| | | int detect_image(const char *filename, bbox_t_container &container) { |
| | | std::string filenameString; |
| | | filenameString = filename; |
| | | |
| | | std::vector<bbox_t> detection = detector->detect(filenameString); |
| | | for (size_t i = 0; i < detection.size() && i < C_SHARP_MAX_OBJECTS; ++i) |
| | | container.candidates[i] = detection[i]; |
| | | return detection.size(); |
| | | } |
| | | |
| | | int detect_mat(const uint8_t* data, const size_t data_length, bbox_t_container &container) { |
| | | #ifdef OPENCV |
| | | std::vector<char> vdata(data, data + data_length); |
| | | cv::Mat image = imdecode(cv::Mat(vdata), 1); |
| | | |
| | | std::vector<bbox_t> detection = detector->detect(image); |
| | | for (size_t i = 0; i < detection.size() && i < C_SHARP_MAX_OBJECTS; ++i) |
| | | container.candidates[i] = detection[i]; |
| | | return detection.size(); |
| | | #else |
| | | return -1; |
| | | #endif // OPENCV |
| | | } |
| | | |
| | | int dispose() { |
| | | detector->~Detector(); |
| | | //detector.reset(); |
| | | return 1; |
| | | } |
| | | |
| | | #ifdef GPU |
| | | void check_cuda(cudaError_t status) { |
| | | if (status != cudaSuccess) { |
| | |
| | | #endif |
| | | |
| | | struct detector_gpu_t { |
| | | float **probs; |
| | | box *boxes; |
| | | network net; |
| | | image images[FRAMES]; |
| | | float *avg; |
| | |
| | | detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | |
| | | #ifdef GPU |
| | | check_cuda( cudaSetDevice(gpu_id) ); |
| | | printf(" Used GPU %d \n", gpu_id); |
| | | //check_cuda( cudaSetDevice(cur_gpu_id) ); |
| | | cuda_set_device(cur_gpu_id); |
| | | printf(" Used GPU %d \n", cur_gpu_id); |
| | | #endif |
| | | network &net = detector_gpu.net; |
| | | net.gpu_index = gpu_id; |
| | | net.gpu_index = cur_gpu_id; |
| | | //gpu_index = i; |
| | | |
| | | char *cfgfile = const_cast<char *>(cfg_filename.data()); |
| | |
| | | load_weights(&net, weightfile); |
| | | } |
| | | set_batch_network(&net, 1); |
| | | net.gpu_index = gpu_id; |
| | | net.gpu_index = cur_gpu_id; |
| | | fuse_conv_batchnorm(net); |
| | | |
| | | layer l = net.layers[net.n - 1]; |
| | | int j; |
| | |
| | | for (j = 0; j < FRAMES; ++j) detector_gpu.predictions[j] = (float *)calloc(l.outputs, sizeof(float)); |
| | | for (j = 0; j < FRAMES; ++j) detector_gpu.images[j] = make_image(1, 1, 3); |
| | | |
| | | detector_gpu.boxes = (box *)calloc(l.w*l.h*l.n, sizeof(box)); |
| | | detector_gpu.probs = (float **)calloc(l.w*l.h*l.n, sizeof(float *)); |
| | | for (j = 0; j < l.w*l.h*l.n; ++j) detector_gpu.probs[j] = (float *)calloc(l.classes, sizeof(float)); |
| | | |
| | | detector_gpu.track_id = (unsigned int *)calloc(l.classes, sizeof(unsigned int)); |
| | | for (j = 0; j < l.classes; ++j) detector_gpu.track_id[j] = 1; |
| | | |
| | |
| | | for (int j = 0; j < FRAMES; ++j) free(detector_gpu.predictions[j]); |
| | | for (int j = 0; j < FRAMES; ++j) if(detector_gpu.images[j].data) free(detector_gpu.images[j].data); |
| | | |
| | | for (int j = 0; j < l.w*l.h*l.n; ++j) free(detector_gpu.probs[j]); |
| | | free(detector_gpu.boxes); |
| | | free(detector_gpu.probs); |
| | | |
| | | int old_gpu_index; |
| | | #ifdef GPU |
| | | cudaGetDevice(&old_gpu_index); |
| | | cudaSetDevice(detector_gpu.net.gpu_index); |
| | | cuda_set_device(detector_gpu.net.gpu_index); |
| | | #endif |
| | | |
| | | free_network(detector_gpu.net); |
| | |
| | | detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | return detector_gpu.net.h; |
| | | } |
| | | YOLODLL_API int Detector::get_net_color_depth() const { |
| | | detector_gpu_t &detector_gpu = *static_cast<detector_gpu_t *>(detector_gpu_ptr.get()); |
| | | return detector_gpu.net.c; |
| | | } |
| | | |
| | | |
| | | YOLODLL_API std::vector<bbox_t> Detector::detect(std::string image_filename, float thresh, bool use_mean) |
| | |
| | | l.output = detector_gpu.avg; |
| | | detector_gpu.demo_index = (detector_gpu.demo_index + 1) % FRAMES; |
| | | } |
| | | //get_region_boxes(l, 1, 1, thresh, detector_gpu.probs, detector_gpu.boxes, 0, 0); |
| | | //if (nms) do_nms_sort(detector_gpu.boxes, detector_gpu.probs, l.w*l.h*l.n, l.classes, nms); |
| | | |
| | | get_region_boxes(l, 1, 1, thresh, detector_gpu.probs, detector_gpu.boxes, 0, 0); |
| | | if (nms) do_nms_sort(detector_gpu.boxes, detector_gpu.probs, l.w*l.h*l.n, l.classes, nms); |
| | | //draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes); |
| | | int nboxes = 0; |
| | | int letterbox = 0; |
| | | float hier_thresh = 0.5; |
| | | detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letterbox); |
| | | if (nms) do_nms_sort(dets, nboxes, l.classes, nms); |
| | | |
| | | std::vector<bbox_t> bbox_vec; |
| | | |
| | | for (size_t i = 0; i < (l.w*l.h*l.n); ++i) { |
| | | box b = detector_gpu.boxes[i]; |
| | | int const obj_id = max_index(detector_gpu.probs[i], l.classes); |
| | | float const prob = detector_gpu.probs[i][obj_id]; |
| | | for (size_t i = 0; i < nboxes; ++i) { |
| | | box b = dets[i].bbox; |
| | | int const obj_id = max_index(dets[i].prob, l.classes); |
| | | float const prob = dets[i].prob[obj_id]; |
| | | |
| | | if (prob > thresh) |
| | | { |
| | |
| | | } |
| | | } |
| | | |
| | | free_detections(dets, nboxes); |
| | | if(sized.data) |
| | | free(sized.data); |
| | | |