Joseph Redmon
2015-03-06 26cddc6f93d54668813bfe729775b617cf77de01
src/detection_layer.c
@@ -1,72 +1,123 @@
int detection_out_height(detection_layer layer)
#include "detection_layer.h"
#include "activations.h"
#include "softmax_layer.h"
#include "blas.h"
#include "cuda.h"
#include <stdio.h>
#include <stdlib.h>
int get_detection_layer_locations(detection_layer layer)
{
    return layer.size + layer.h*layer.stride;
    return layer.inputs / (layer.classes+layer.coords+layer.rescore);
}
int detection_out_width(detection_layer layer)
int get_detection_layer_output_size(detection_layer layer)
{
    return layer.size + layer.w*layer.stride;
    return get_detection_layer_locations(layer)*(layer.classes+layer.coords);
}
detection_layer *make_detection_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
detection_layer *make_detection_layer(int batch, int inputs, int classes, int coords, int rescore)
{
    int i;
    size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
    detection_layer *layer = calloc(1, sizeof(detection_layer));
    layer->h = h;
    layer->w = w;
    layer->c = c;
    layer->n = n;
    layer->batch = batch;
    layer->stride = stride;
    layer->size = size;
    assert(c%n == 0);
    layer->inputs = inputs;
    layer->classes = classes;
    layer->coords = coords;
    layer->rescore = rescore;
    int outputs = get_detection_layer_output_size(*layer);
    layer->output = calloc(batch*outputs, sizeof(float));
    layer->delta = calloc(batch*outputs, sizeof(float));
    #ifdef GPU
    layer->output_gpu = cuda_make_array(0, batch*outputs);
    layer->delta_gpu = cuda_make_array(0, batch*outputs);
    #endif
    layer->filters = calloc(c*size*size, sizeof(float));
    layer->filter_updates = calloc(c*size*size, sizeof(float));
    layer->filter_momentum = calloc(c*size*size, sizeof(float));
    float scale = 1./(size*size*c);
    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform());
    int out_h = detection_out_height(*layer);
    int out_w = detection_out_width(*layer);
    layer->output = calloc(layer->batch * out_h * out_w * n, sizeof(float));
    layer->delta  = calloc(layer->batch * out_h * out_w * n, sizeof(float));
    layer->activation = activation;
    fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
    fprintf(stderr, "Detection Layer\n");
    srand(0);
    return layer;
}
void forward_detection_layer(const detection_layer layer, float *in)
void forward_detection_layer(const detection_layer layer, float *in, float *truth)
{
    int out_h = detection_out_height(layer);
    int out_w = detection_out_width(layer);
    int i,j,fh, fw,c;
    memset(layer.output, 0, layer->batch*layer->n*out_h*out_w*sizeof(float));
    for(c = 0; c < layer.c; ++c){
        for(i = 0; i < layer.h; ++i){
            for(j = 0; j < layer.w; ++j){
                float val = layer->input[j+(i + c*layer.h)*layer.w];
                for(fh = 0; fh < layer.size; ++fh){
                    for(fw = 0; fw < layer.size; ++fw){
                        int h = i*layer.stride + fh;
                        int w = j*layer.stride + fw;
                        layer.output[w+(h+c/n*out_h)*out_w] += val*layer->filters[fw+(fh+c*layer.size)*layer.size];
                    }
                }
            }
    int in_i = 0;
    int out_i = 0;
    int locations = get_detection_layer_locations(layer);
    int i,j;
    for(i = 0; i < layer.batch*locations; ++i){
        int mask = (!truth || !truth[out_i + layer.classes - 1]);
        float scale = 1;
        if(layer.rescore) scale = in[in_i++];
        for(j = 0; j < layer.classes; ++j){
            layer.output[out_i++] = scale*in[in_i++];
        }
        softmax_array(layer.output + out_i - layer.classes, layer.classes, layer.output + out_i - layer.classes);
        activate_array(layer.output+out_i, layer.coords, SIGMOID);
        for(j = 0; j < layer.coords; ++j){
            layer.output[out_i++] = mask*in[in_i++];
        }
        //printf("%d\n", mask);
        //for(j = 0; j < layer.classes+layer.coords; ++j) printf("%f ", layer.output[i*(layer.classes+layer.coords)+j]);
        //printf ("\n");
    }
}
void backward_detection_layer(const detection_layer layer, float *delta)
void backward_detection_layer(const detection_layer layer, float *in, float *delta)
{
    int locations = get_detection_layer_locations(layer);
    int i,j;
    int in_i = 0;
    int out_i = 0;
    for(i = 0; i < layer.batch*locations; ++i){
        float scale = 1;
        float latent_delta = 0;
        if(layer.rescore) scale = in[in_i++];
        for(j = 0; j < layer.classes; ++j){
            latent_delta += in[in_i]*layer.delta[out_i];
            delta[in_i++] = scale*layer.delta[out_i++];
        }
        for(j = 0; j < layer.coords; ++j){
            delta[in_i++] = layer.delta[out_i++];
        }
        gradient_array(in + in_i - layer.coords, layer.coords, SIGMOID, layer.delta + out_i - layer.coords);
        if(layer.rescore) delta[in_i-layer.coords-layer.classes-layer.rescore] = latent_delta;
    }
}
#ifdef GPU
void forward_detection_layer_gpu(const detection_layer layer, float *in, float *truth)
{
    int outputs = get_detection_layer_output_size(layer);
    float *in_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
    float *truth_cpu = 0;
    if(truth){
        truth_cpu = calloc(layer.batch*outputs, sizeof(float));
        cuda_pull_array(truth, truth_cpu, layer.batch*outputs);
    }
    cuda_pull_array(in, in_cpu, layer.batch*layer.inputs);
    forward_detection_layer(layer, in_cpu, truth_cpu);
    cuda_push_array(layer.output_gpu, layer.output, layer.batch*outputs);
    free(in_cpu);
    if(truth_cpu) free(truth_cpu);
}
void backward_detection_layer_gpu(detection_layer layer, float *in, float *delta)
{
    int outputs = get_detection_layer_output_size(layer);
    float *in_cpu =    calloc(layer.batch*layer.inputs, sizeof(float));
    float *delta_cpu = calloc(layer.batch*layer.inputs, sizeof(float));
    cuda_pull_array(in, in_cpu, layer.batch*layer.inputs);
    cuda_pull_array(layer.delta_gpu, layer.delta, layer.batch*outputs);
    backward_detection_layer(layer, in_cpu, delta_cpu);
    cuda_push_array(delta, delta_cpu, layer.batch*layer.inputs);
    free(in_cpu);
    free(delta_cpu);
}
#endif