| | |
| | | //printf("%d\n", j); |
| | | //printf("Prob: %f\n", box[j]); |
| | | int class = max_index(box+j, classes); |
| | | if(box[j+class] > .4){ |
| | | if(box[j+class] > .05){ |
| | | //int z; |
| | | //for(z = 0; z < classes; ++z) printf("%f %s\n", box[j+z], class_names[z]); |
| | | printf("%f %s\n", box[j+class], class_names[class]); |
| | |
| | | if (imgnet){ |
| | | plist = get_paths("/home/pjreddie/data/imagenet/det.train.list"); |
| | | }else{ |
| | | plist = get_paths("/home/pjreddie/data/voc/no_2012_val.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/no_2012_val.txt"); |
| | | plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/coco/trainval.txt"); |
| | | //plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt"); |
| | | } |
| | |
| | | if(i == 100){ |
| | | net.learning_rate *= 10; |
| | | } |
| | | if(i%100==0){ |
| | | if(i%1000==0){ |
| | | char buff[256]; |
| | | sprintf(buff, "/home/pjreddie/imagenet_backup/%s_%d.weights",base, i); |
| | | save_weights(net, buff); |
| | |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/test_2007.txt"); |
| | | list *plist = get_paths("/home/pjreddie/data/voc/val_2012.txt"); |
| | | list *plist = get_paths("/home/pjreddie/data/voc/test_2007.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/val_2012.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/test.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/val.expanded.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/train.txt"); |
| | |
| | | } |
| | | } |
| | | |
| | | void do_mask(network net, data d, int offset, int classes, int nuisance, int background, int num_boxes, int per_box) |
| | | { |
| | | matrix pred = network_predict_data(net, d); |
| | | int j, k, class; |
| | | for(j = 0; j < pred.rows; ++j){ |
| | | printf("%d ", offset + j); |
| | | for(k = 0; k < pred.cols; k += per_box){ |
| | | float scale = 1.; |
| | | if (nuisance) scale = 1.-pred.vals[j][k]; |
| | | float max_prob = 0; |
| | | for (class = 0; class < classes; ++class){ |
| | | float prob = scale*pred.vals[j][k+class+background+nuisance]; |
| | | if(prob > max_prob) max_prob = prob; |
| | | } |
| | | printf("%f ", max_prob); |
| | | } |
| | | printf("\n"); |
| | | } |
| | | free_matrix(pred); |
| | | } |
| | | |
| | | void mask_detection(char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | | load_weights(&net, weightfile); |
| | | } |
| | | detection_layer layer = get_network_detection_layer(net); |
| | | fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay); |
| | | srand(time(0)); |
| | | |
| | | list *plist = get_paths("/home/pjreddie/data/voc/test_2007.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/val_2012.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/test.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/val.expanded.txt"); |
| | | //list *plist = get_paths("/home/pjreddie/data/voc/train.txt"); |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | int classes = layer.classes; |
| | | int nuisance = layer.nuisance; |
| | | int background = (layer.background && !nuisance); |
| | | int num_boxes = sqrt(get_detection_layer_locations(layer)); |
| | | |
| | | int per_box = 4+classes+background+nuisance; |
| | | int num_output = num_boxes*num_boxes*per_box; |
| | | |
| | | int m = plist->size; |
| | | int i = 0; |
| | | int splits = 100; |
| | | |
| | | int nthreads = 4; |
| | | int t; |
| | | data *val = calloc(nthreads, sizeof(data)); |
| | | data *buf = calloc(nthreads, sizeof(data)); |
| | | pthread_t *thr = calloc(nthreads, sizeof(data)); |
| | | for(t = 0; t < nthreads; ++t){ |
| | | int num = (i+1+t)*m/splits - (i+t)*m/splits; |
| | | char **part = paths+((i+t)*m/splits); |
| | | thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t])); |
| | | } |
| | | |
| | | clock_t time; |
| | | for(i = nthreads; i <= splits; i += nthreads){ |
| | | time=clock(); |
| | | for(t = 0; t < nthreads; ++t){ |
| | | pthread_join(thr[t], 0); |
| | | val[t] = buf[t]; |
| | | } |
| | | for(t = 0; t < nthreads && i < splits; ++t){ |
| | | int num = (i+1+t)*m/splits - (i+t)*m/splits; |
| | | char **part = paths+((i+t)*m/splits); |
| | | thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t])); |
| | | } |
| | | |
| | | fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time)); |
| | | for(t = 0; t < nthreads; ++t){ |
| | | do_mask(net, val[t], (i-nthreads+t)*m/splits, classes, nuisance, background, num_boxes, per_box); |
| | | free_data(val[t]); |
| | | } |
| | | time=clock(); |
| | | } |
| | | } |
| | | |
| | | void validate_detection_post(char *cfgfile, char *weightfile) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | |
| | | printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time)); |
| | | draw_detection(im, predictions, 7, "detections"); |
| | | free_image(im); |
| | | cvWaitKey(0); |
| | | } |
| | | } |
| | | |
| | |
| | | else if(0==strcmp(argv[2], "teststuff")) train_detection_teststuff(cfg, weights); |
| | | else if(0==strcmp(argv[2], "trainloc")) train_localization(cfg, weights); |
| | | else if(0==strcmp(argv[2], "valid")) validate_detection(cfg, weights); |
| | | else if(0==strcmp(argv[2], "mask")) mask_detection(cfg, weights); |
| | | else if(0==strcmp(argv[2], "validpost")) validate_detection_post(cfg, weights); |
| | | } |