| | |
| | | |
| | | connected_layer *make_connected_layer(int batch, int inputs, int outputs, ACTIVATION activation, float learning_rate, float momentum, float decay) |
| | | { |
| | | fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs); |
| | | int i; |
| | | connected_layer *layer = calloc(1, sizeof(connected_layer)); |
| | | |
| | |
| | | //layer->weight_adapt = calloc(inputs*outputs, sizeof(float)); |
| | | layer->weights = calloc(inputs*outputs, sizeof(float)); |
| | | float scale = 1./inputs; |
| | | scale = .05; |
| | | scale = .01; |
| | | for(i = 0; i < inputs*outputs; ++i) |
| | | layer->weights[i] = scale*2*(rand_uniform()-.5); |
| | | |
| | |
| | | layer->delta_cl = cl_make_array(layer->delta, outputs*batch); |
| | | #endif |
| | | layer->activation = activation; |
| | | fprintf(stderr, "Connected Layer: %d inputs, %d outputs\n", inputs, outputs); |
| | | return layer; |
| | | } |
| | | |
| | |
| | | |
| | | #ifdef GPU |
| | | |
| | | void pull_connected_layer(connected_layer layer) |
| | | { |
| | | cl_read_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs); |
| | | cl_read_array(layer.biases_cl, layer.biases, layer.outputs); |
| | | cl_read_array(layer.weight_updates_cl, layer.weight_updates, layer.inputs*layer.outputs); |
| | | cl_read_array(layer.bias_updates_cl, layer.bias_updates, layer.outputs); |
| | | } |
| | | |
| | | void push_connected_layer(connected_layer layer) |
| | | { |
| | | cl_write_array(layer.weights_cl, layer.weights, layer.inputs*layer.outputs); |
| | | cl_write_array(layer.biases_cl, layer.biases, layer.outputs); |
| | | cl_write_array(layer.weight_updates_cl, layer.weight_updates, layer.inputs*layer.outputs); |
| | | cl_write_array(layer.bias_updates_cl, layer.bias_updates, layer.outputs); |
| | | } |
| | | |
| | | void update_connected_layer_gpu(connected_layer layer) |
| | | { |
| | | axpy_ongpu(layer.outputs, layer.learning_rate, layer.bias_updates_cl, 1, layer.biases_cl, 1); |
| | |
| | | scal_ongpu(layer.inputs*layer.outputs, 1.-layer.learning_rate*layer.decay, layer.weights_cl, 1); |
| | | axpy_ongpu(layer.inputs*layer.outputs, layer.learning_rate, layer.weight_updates_cl, 1, layer.weights_cl, 1); |
| | | scal_ongpu(layer.inputs*layer.outputs, layer.momentum, layer.weight_updates_cl, 1); |
| | | pull_connected_layer(layer); |
| | | } |
| | | |
| | | void forward_connected_layer_gpu(connected_layer layer, cl_mem input) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | cl_mem sub = cl_sub_array(layer.output_cl, i*layer.outputs, layer.outputs); |
| | | copy_ongpu(layer.outputs, layer.biases_cl, 1, sub, 1); |
| | | clReleaseMemObject(sub); |
| | | copy_ongpu_offset(layer.outputs, layer.biases_cl, 0, 1, layer.output_cl, i*layer.outputs, 1); |
| | | } |
| | | int m = layer.batch; |
| | | int k = layer.inputs; |
| | |
| | | int i; |
| | | gradient_array_ongpu(layer.output_cl, layer.outputs*layer.batch, layer.activation, layer.delta_cl); |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | cl_mem sub = cl_sub_array(layer.delta_cl, i*layer.outputs, layer.outputs); |
| | | axpy_ongpu(layer.outputs, 1, sub, 1, layer.bias_updates_cl, 1); |
| | | clReleaseMemObject(sub); |
| | | axpy_ongpu_offset(layer.outputs, 1, layer.delta_cl, i*layer.outputs, 1, layer.bias_updates_cl, 0, 1); |
| | | } |
| | | int m = layer.inputs; |
| | | int k = layer.batch; |