| | |
| | | #include <stdio.h> |
| | | #include "network.h" |
| | | #include "image.h" |
| | | #include "data.h" |
| | | |
| | | #include "connected_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "maxpool_layer.h" |
| | | |
| | | void run_network(image input, network net) |
| | | network make_network(int n) |
| | | { |
| | | network net; |
| | | net.n = n; |
| | | net.layers = calloc(net.n, sizeof(void *)); |
| | | net.types = calloc(net.n, sizeof(LAYER_TYPE)); |
| | | return net; |
| | | } |
| | | |
| | | void forward_network(network net, double *input) |
| | | { |
| | | int i; |
| | | double *input_d = input.data; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | run_convolutional_layer(input, layer); |
| | | forward_convolutional_layer(layer, input); |
| | | input = layer.output; |
| | | input_d = layer.output.data; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | run_connected_layer(input_d, layer); |
| | | input_d = layer.output; |
| | | forward_connected_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | run_maxpool_layer(input, layer); |
| | | forward_maxpool_layer(layer, input); |
| | | input = layer.output; |
| | | input_d = layer.output.data; |
| | | } |
| | | } |
| | | } |
| | |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | update_connected_layer(layer, step); |
| | | update_connected_layer(layer, step, .3, 0); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void learn_network(image input, network net) |
| | | double *get_network_output_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } |
| | | return 0; |
| | | } |
| | | double *get_network_output(network net) |
| | | { |
| | | return get_network_output_layer(net, net.n-1); |
| | | } |
| | | |
| | | double *get_network_delta_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | double *get_network_delta(network net) |
| | | { |
| | | return get_network_delta_layer(net, net.n-1); |
| | | } |
| | | |
| | | void learn_network(network net, double *input) |
| | | { |
| | | int i; |
| | | image prev; |
| | | double *prev_p; |
| | | double *prev_input; |
| | | double *prev_delta; |
| | | for(i = net.n-1; i >= 0; --i){ |
| | | if(i == 0){ |
| | | prev = input; |
| | | prev_p = prev.data; |
| | | } else if(net.types[i-1] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i-1]; |
| | | prev = layer.output; |
| | | prev_p = prev.data; |
| | | } else if(net.types[i-1] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i-1]; |
| | | prev = layer.output; |
| | | prev_p = prev.data; |
| | | } else if(net.types[i-1] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i-1]; |
| | | prev_p = layer.output; |
| | | prev_input = input; |
| | | prev_delta = 0; |
| | | }else{ |
| | | prev_input = get_network_output_layer(net, i-1); |
| | | prev_delta = get_network_delta_layer(net, i-1); |
| | | } |
| | | |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | learn_convolutional_layer(prev, layer); |
| | | learn_convolutional_layer(layer, prev_input); |
| | | if(i != 0) backward_convolutional_layer(layer, prev_input, prev_delta); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | learn_connected_layer(prev_p, layer); |
| | | learn_connected_layer(layer, prev_input); |
| | | if(i != 0) backward_connected_layer(layer, prev_input, prev_delta); |
| | | } |
| | | } |
| | | } |
| | | |
| | | double *get_network_output(network net) |
| | | void train_network_batch(network net, batch b) |
| | | { |
| | | int i = net.n-1; |
| | | int i,j; |
| | | int k = get_network_output_size(net); |
| | | int correct = 0; |
| | | for(i = 0; i < b.n; ++i){ |
| | | forward_network(net, b.images[i].data); |
| | | image o = get_network_image(net); |
| | | double *output = get_network_output(net); |
| | | double *delta = get_network_delta(net); |
| | | for(j = 0; j < k; ++j){ |
| | | //printf("%f %f\n", b.truth[i][j], output[j]); |
| | | delta[j] = b.truth[i][j]-output[j]; |
| | | if(fabs(delta[j]) < .5) ++correct; |
| | | //printf("%f\n", output[j]); |
| | | } |
| | | learn_network(net, b.images[i].data); |
| | | update_network(net, .00001); |
| | | } |
| | | printf("Accuracy: %f\n", (double)correct/b.n); |
| | | } |
| | | |
| | | int get_network_output_size_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.output.data; |
| | | image output = get_convolutional_image(layer); |
| | | return output.h*output.w*output.c; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.output.data; |
| | | image output = get_maxpool_image(layer); |
| | | return output.h*output.w*output.c; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.output; |
| | | return layer.outputs; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | int get_network_output_size(network net) |
| | | { |
| | | int i = net.n-1; |
| | | return get_network_output_size_layer(net, i); |
| | | } |
| | | |
| | | image get_network_image_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return get_convolutional_image(layer); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return get_maxpool_image(layer); |
| | | } |
| | | return make_image(0,0,0); |
| | | } |
| | | |
| | | image get_network_image(network net) |
| | | { |
| | | int i; |
| | | for(i = net.n-1; i >= 0; --i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } |
| | | image m = get_network_image_layer(net, i); |
| | | if(m.h != 0) return m; |
| | | } |
| | | return make_image(1,1,1); |
| | | } |
| | | |
| | | void visualize_network(network net) |
| | | { |
| | | int i; |
| | | for(i = 0; i < 1; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | visualize_convolutional_layer(layer); |
| | | } |
| | | } |
| | | } |
| | | |