| | |
| | | #include "mini_blas.h" |
| | | #include <stdio.h> |
| | | |
| | | int convolutional_out_height(convolutional_layer layer) |
| | | { |
| | | return (layer.h-layer.size)/layer.stride + 1; |
| | | } |
| | | |
| | | int convolutional_out_width(convolutional_layer layer) |
| | | { |
| | | return (layer.w-layer.size)/layer.stride + 1; |
| | | } |
| | | |
| | | image get_convolutional_image(convolutional_layer layer) |
| | | { |
| | | int h,w,c; |
| | | h = layer.out_h; |
| | | w = layer.out_w; |
| | | h = convolutional_out_height(layer); |
| | | w = convolutional_out_width(layer); |
| | | c = layer.n; |
| | | return double_to_image(h,w,c,layer.output); |
| | | return float_to_image(h,w,c,layer.output); |
| | | } |
| | | |
| | | image get_convolutional_delta(convolutional_layer layer) |
| | | { |
| | | int h,w,c; |
| | | h = layer.out_h; |
| | | w = layer.out_w; |
| | | h = convolutional_out_height(layer); |
| | | w = convolutional_out_width(layer); |
| | | c = layer.n; |
| | | return double_to_image(h,w,c,layer.delta); |
| | | return float_to_image(h,w,c,layer.delta); |
| | | } |
| | | |
| | | convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation) |
| | | convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, ACTIVATION activation) |
| | | { |
| | | int i; |
| | | int out_h,out_w; |
| | | size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter... |
| | | convolutional_layer *layer = calloc(1, sizeof(convolutional_layer)); |
| | | layer->h = h; |
| | | layer->w = w; |
| | | layer->c = c; |
| | | layer->n = n; |
| | | layer->batch = batch; |
| | | layer->stride = stride; |
| | | layer->size = size; |
| | | |
| | | layer->filters = calloc(c*n*size*size, sizeof(double)); |
| | | layer->filter_updates = calloc(c*n*size*size, sizeof(double)); |
| | | layer->filter_momentum = calloc(c*n*size*size, sizeof(double)); |
| | | layer->filters = calloc(c*n*size*size, sizeof(float)); |
| | | layer->filter_updates = calloc(c*n*size*size, sizeof(float)); |
| | | layer->filter_momentum = calloc(c*n*size*size, sizeof(float)); |
| | | |
| | | layer->biases = calloc(n, sizeof(double)); |
| | | layer->bias_updates = calloc(n, sizeof(double)); |
| | | layer->bias_momentum = calloc(n, sizeof(double)); |
| | | double scale = 2./(size*size); |
| | | for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = rand_normal()*scale; |
| | | layer->biases = calloc(n, sizeof(float)); |
| | | layer->bias_updates = calloc(n, sizeof(float)); |
| | | layer->bias_momentum = calloc(n, sizeof(float)); |
| | | float scale = 1./(size*size*c); |
| | | for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform()); |
| | | for(i = 0; i < n; ++i){ |
| | | //layer->biases[i] = rand_normal()*scale + scale; |
| | | layer->biases[i] = 0; |
| | | } |
| | | out_h = (h-size)/stride + 1; |
| | | out_w = (w-size)/stride + 1; |
| | | int out_h = convolutional_out_height(*layer); |
| | | int out_w = convolutional_out_width(*layer); |
| | | |
| | | layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(double)); |
| | | layer->output = calloc(out_h * out_w * n, sizeof(double)); |
| | | layer->delta = calloc(out_h * out_w * n, sizeof(double)); |
| | | layer->col_image = calloc(layer->batch*out_h*out_w*size*size*c, sizeof(float)); |
| | | layer->output = calloc(layer->batch*out_h * out_w * n, sizeof(float)); |
| | | layer->delta = calloc(layer->batch*out_h * out_w * n, sizeof(float)); |
| | | layer->activation = activation; |
| | | layer->out_h = out_h; |
| | | layer->out_w = out_w; |
| | | |
| | | fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); |
| | | srand(0); |
| | |
| | | return layer; |
| | | } |
| | | |
| | | void forward_convolutional_layer(const convolutional_layer layer, double *in) |
| | | void resize_convolutional_layer(convolutional_layer *layer, int h, int w, int c) |
| | | { |
| | | layer->h = h; |
| | | layer->w = w; |
| | | layer->c = c; |
| | | int out_h = convolutional_out_height(*layer); |
| | | int out_w = convolutional_out_width(*layer); |
| | | |
| | | layer->col_image = realloc(layer->col_image, |
| | | layer->batch*out_h*out_w*layer->size*layer->size*layer->c*sizeof(float)); |
| | | layer->output = realloc(layer->output, |
| | | layer->batch*out_h * out_w * layer->n*sizeof(float)); |
| | | layer->delta = realloc(layer->delta, |
| | | layer->batch*out_h * out_w * layer->n*sizeof(float)); |
| | | } |
| | | |
| | | void forward_convolutional_layer(const convolutional_layer layer, float *in) |
| | | { |
| | | int i; |
| | | int m = layer.n; |
| | | int k = layer.size*layer.size*layer.c; |
| | | int n = ((layer.h-layer.size)/layer.stride + 1)* |
| | | ((layer.w-layer.size)/layer.stride + 1); |
| | | int n = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer)* |
| | | layer.batch; |
| | | |
| | | memset(layer.output, 0, m*n*sizeof(double)); |
| | | memset(layer.output, 0, m*n*sizeof(float)); |
| | | |
| | | double *a = layer.filters; |
| | | double *b = layer.col_image; |
| | | double *c = layer.output; |
| | | |
| | | im2col_cpu(in, layer.c, layer.h, layer.w, layer.size, layer.stride, b); |
| | | float *a = layer.filters; |
| | | float *b = layer.col_image; |
| | | float *c = layer.output; |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | im2col_cpu(in+i*(n/layer.batch), layer.c, layer.h, layer.w, layer.size, layer.stride, b+i*(n/layer.batch)); |
| | | } |
| | | gemm(0,0,m,n,k,1,a,k,b,n,1,c,n); |
| | | |
| | | for(i = 0; i < m*n; ++i){ |
| | | layer.output[i] = activate(layer.output[i], layer.activation); |
| | | } |
| | | //for(i = 0; i < m*n; ++i) if(i%(m*n/10+1)==0) printf("%f, ", layer.output[i]); printf("\n"); |
| | | |
| | | } |
| | | |
| | | void gradient_delta_convolutional_layer(convolutional_layer layer) |
| | | { |
| | | int i; |
| | | for(i = 0; i < layer.out_h*layer.out_w*layer.n; ++i){ |
| | | int size = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer)* |
| | | layer.n* |
| | | layer.batch; |
| | | for(i = 0; i < size; ++i){ |
| | | layer.delta[i] *= gradient(layer.output[i], layer.activation); |
| | | } |
| | | } |
| | | |
| | | void learn_bias_convolutional_layer(convolutional_layer layer) |
| | | { |
| | | int i,j; |
| | | int size = layer.out_h*layer.out_w; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | double sum = 0; |
| | | for(j = 0; j < size; ++j){ |
| | | sum += layer.delta[j+i*size]; |
| | | int i,j,b; |
| | | int size = convolutional_out_height(layer) |
| | | *convolutional_out_width(layer); |
| | | for(b = 0; b < layer.batch; ++b){ |
| | | for(i = 0; i < layer.n; ++i){ |
| | | float sum = 0; |
| | | for(j = 0; j < size; ++j){ |
| | | sum += layer.delta[j+size*(i+b*layer.n)]; |
| | | } |
| | | layer.bias_updates[i] += sum/size; |
| | | } |
| | | layer.bias_updates[i] += sum/size; |
| | | } |
| | | } |
| | | |
| | |
| | | learn_bias_convolutional_layer(layer); |
| | | int m = layer.n; |
| | | int n = layer.size*layer.size*layer.c; |
| | | int k = ((layer.h-layer.size)/layer.stride + 1)* |
| | | ((layer.w-layer.size)/layer.stride + 1); |
| | | int k = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer)* |
| | | layer.batch; |
| | | |
| | | double *a = layer.delta; |
| | | double *b = layer.col_image; |
| | | double *c = layer.filter_updates; |
| | | float *a = layer.delta; |
| | | float *b = layer.col_image; |
| | | float *c = layer.filter_updates; |
| | | |
| | | gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | } |
| | | |
| | | void update_convolutional_layer(convolutional_layer layer, double step, double momentum, double decay) |
| | | void backward_convolutional_layer(convolutional_layer layer, float *delta) |
| | | { |
| | | int i; |
| | | int m = layer.size*layer.size*layer.c; |
| | | int k = layer.n; |
| | | int n = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer)* |
| | | layer.batch; |
| | | |
| | | float *a = layer.filters; |
| | | float *b = layer.delta; |
| | | float *c = layer.col_image; |
| | | |
| | | |
| | | memset(c, 0, m*n*sizeof(float)); |
| | | gemm(1,0,m,n,k,1,a,m,b,n,1,c,n); |
| | | |
| | | memset(delta, 0, layer.batch*layer.h*layer.w*layer.c*sizeof(float)); |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | col2im_cpu(c+i*n/layer.batch, layer.c, layer.h, layer.w, layer.size, layer.stride, delta+i*n/layer.batch); |
| | | } |
| | | } |
| | | |
| | | void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay) |
| | | { |
| | | int i; |
| | | int size = layer.size*layer.size*layer.c*layer.n; |
| | |
| | | } |
| | | /* |
| | | |
| | | void backward_convolutional_layer2(convolutional_layer layer, double *input, double *delta) |
| | | void backward_convolutional_layer2(convolutional_layer layer, float *input, float *delta) |
| | | { |
| | | image in_delta = double_to_image(layer.h, layer.w, layer.c, delta); |
| | | image in_delta = float_to_image(layer.h, layer.w, layer.c, delta); |
| | | image out_delta = get_convolutional_delta(layer); |
| | | int i,j; |
| | | for(i = 0; i < layer.n; ++i){ |
| | |
| | | } |
| | | |
| | | |
| | | void learn_convolutional_layer(convolutional_layer layer, double *input) |
| | | void learn_convolutional_layer(convolutional_layer layer, float *input) |
| | | { |
| | | int i; |
| | | image in_image = double_to_image(layer.h, layer.w, layer.c, input); |
| | | image in_image = float_to_image(layer.h, layer.w, layer.c, input); |
| | | image out_delta = get_convolutional_delta(layer); |
| | | gradient_delta_convolutional_layer(layer); |
| | | for(i = 0; i < layer.n; ++i){ |
| | |
| | | } |
| | | } |
| | | |
| | | void update_convolutional_layer(convolutional_layer layer, double step, double momentum, double decay) |
| | | void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay) |
| | | { |
| | | int i,j; |
| | | for(i = 0; i < layer.n; ++i){ |
| | |
| | | |
| | | void test_convolutional_layer() |
| | | { |
| | | convolutional_layer l = *make_convolutional_layer(4,4,1,1,3,1,LINEAR); |
| | | double input[] = {1,2,3,4, |
| | | convolutional_layer l = *make_convolutional_layer(1,4,4,1,1,3,1,LINEAR); |
| | | float input[] = {1,2,3,4, |
| | | 5,6,7,8, |
| | | 9,10,11,12, |
| | | 13,14,15,16}; |
| | | double filter[] = {.5, 0, .3, |
| | | float filter[] = {.5, 0, .3, |
| | | 0 , 1, 0, |
| | | .2 , 0, 1}; |
| | | double delta[] = {1, 2, |
| | | float delta[] = {1, 2, |
| | | 3, 4}; |
| | | float in_delta[] = {.5,1,.3,.6, |
| | | 5,6,7,8, |
| | | 9,10,11,12, |
| | | 13,14,15,16}; |
| | | l.filters = filter; |
| | | forward_convolutional_layer(l, input); |
| | | l.delta = delta; |
| | | learn_convolutional_layer(l); |
| | | image filter_updates = double_to_image(3,3,1,l.filter_updates); |
| | | image filter_updates = float_to_image(3,3,1,l.filter_updates); |
| | | print_image(filter_updates); |
| | | printf("Delta:\n"); |
| | | backward_convolutional_layer(l, in_delta); |
| | | pm(4,4,in_delta); |
| | | } |
| | | |
| | | image get_convolutional_filter(convolutional_layer layer, int i) |
| | |
| | | int h = layer.size; |
| | | int w = layer.size; |
| | | int c = layer.c; |
| | | return double_to_image(h,w,c,layer.filters+i*h*w*c); |
| | | return float_to_image(h,w,c,layer.filters+i*h*w*c); |
| | | } |
| | | |
| | | void visualize_convolutional_layer(convolutional_layer layer, char *window) |