| | |
| | | parse_data(weights, layer->filters, c*n*size*size); |
| | | parse_data(biases, layer->biases, n); |
| | | #ifdef GPU |
| | | push_convolutional_layer(*layer); |
| | | if(weights || biases) push_convolutional_layer(*layer); |
| | | #endif |
| | | option_unused(options); |
| | | return layer; |
| | |
| | | parse_data(biases, layer->biases, output); |
| | | parse_data(weights, layer->weights, input*output); |
| | | #ifdef GPU |
| | | push_connected_layer(*layer); |
| | | if(weights || biases) push_connected_layer(*layer); |
| | | #endif |
| | | option_unused(options); |
| | | return layer; |
| | |
| | | fprintf(fp, "\n"); |
| | | } |
| | | |
| | | void save_weights(network net, char *filename) |
| | | { |
| | | printf("Saving weights to %s\n", filename); |
| | | FILE *fp = fopen(filename, "w"); |
| | | if(!fp) file_error(filename); |
| | | |
| | | fwrite(&net.learning_rate, sizeof(float), 1, fp); |
| | | fwrite(&net.momentum, sizeof(float), 1, fp); |
| | | fwrite(&net.decay, sizeof(float), 1, fp); |
| | | fwrite(&net.seen, sizeof(int), 1, fp); |
| | | |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *) net.layers[i]; |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_convolutional_layer(layer); |
| | | } |
| | | #endif |
| | | int num = layer.n*layer.c*layer.size*layer.size; |
| | | fwrite(layer.biases, sizeof(float), layer.n, fp); |
| | | fwrite(layer.filters, sizeof(float), num, fp); |
| | | } |
| | | if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *) net.layers[i]; |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | pull_connected_layer(layer); |
| | | } |
| | | #endif |
| | | fwrite(layer.biases, sizeof(float), layer.outputs, fp); |
| | | fwrite(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp); |
| | | } |
| | | } |
| | | fclose(fp); |
| | | } |
| | | |
| | | void load_weights(network *net, char *filename) |
| | | { |
| | | printf("Loading weights from %s\n", filename); |
| | | FILE *fp = fopen(filename, "r"); |
| | | if(!fp) file_error(filename); |
| | | |
| | | fread(&net->learning_rate, sizeof(float), 1, fp); |
| | | fread(&net->momentum, sizeof(float), 1, fp); |
| | | fread(&net->decay, sizeof(float), 1, fp); |
| | | fread(&net->seen, sizeof(int), 1, fp); |
| | | set_learning_network(net, net->learning_rate, net->momentum, net->decay); |
| | | |
| | | int i; |
| | | for(i = 0; i < net->n; ++i){ |
| | | if(net->types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *) net->layers[i]; |
| | | int num = layer.n*layer.c*layer.size*layer.size; |
| | | fread(layer.biases, sizeof(float), layer.n, fp); |
| | | fread(layer.filters, sizeof(float), num, fp); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_convolutional_layer(layer); |
| | | } |
| | | #endif |
| | | } |
| | | if(net->types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *) net->layers[i]; |
| | | fread(layer.biases, sizeof(float), layer.outputs, fp); |
| | | fread(layer.weights, sizeof(float), layer.outputs*layer.inputs, fp); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | push_connected_layer(layer); |
| | | } |
| | | #endif |
| | | } |
| | | } |
| | | fclose(fp); |
| | | } |
| | | |
| | | void save_network(network net, char *filename) |
| | | { |