| | |
| | | #include <stdio.h> |
| | | #include <time.h> |
| | | #include <assert.h> |
| | | #include "network.h" |
| | | #include "image.h" |
| | | #include "data.h" |
| | | #include "utils.h" |
| | | #include "blas.h" |
| | | |
| | | #include "crop_layer.h" |
| | | #include "connected_layer.h" |
| | | #include "gru_layer.h" |
| | | #include "rnn_layer.h" |
| | | #include "crnn_layer.h" |
| | | #include "local_layer.h" |
| | | #include "convolutional_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "activation_layer.h" |
| | | #include "detection_layer.h" |
| | | #include "region_layer.h" |
| | | #include "normalization_layer.h" |
| | | #include "batchnorm_layer.h" |
| | | #include "maxpool_layer.h" |
| | | #include "reorg_layer.h" |
| | | #include "avgpool_layer.h" |
| | | #include "cost_layer.h" |
| | | #include "softmax_layer.h" |
| | | #include "dropout_layer.h" |
| | | #include "route_layer.h" |
| | | #include "shortcut_layer.h" |
| | | |
| | | network make_network(int n, int batch) |
| | | int get_current_batch(network net) |
| | | { |
| | | network net; |
| | | net.n = n; |
| | | net.batch = batch; |
| | | net.layers = calloc(net.n, sizeof(void *)); |
| | | net.types = calloc(net.n, sizeof(LAYER_TYPE)); |
| | | net.outputs = 0; |
| | | net.output = 0; |
| | | int batch_num = (*net.seen)/(net.batch*net.subdivisions); |
| | | return batch_num; |
| | | } |
| | | |
| | | void reset_momentum(network net) |
| | | { |
| | | if (net.momentum == 0) return; |
| | | net.learning_rate = 0; |
| | | net.momentum = 0; |
| | | net.decay = 0; |
| | | #ifdef GPU |
| | | net.input_cl = 0; |
| | | //if(net.gpu_index >= 0) update_network_gpu(net); |
| | | #endif |
| | | } |
| | | |
| | | float get_current_rate(network net) |
| | | { |
| | | int batch_num = get_current_batch(net); |
| | | int i; |
| | | float rate; |
| | | switch (net.policy) { |
| | | case CONSTANT: |
| | | return net.learning_rate; |
| | | case STEP: |
| | | return net.learning_rate * pow(net.scale, batch_num/net.step); |
| | | case STEPS: |
| | | rate = net.learning_rate; |
| | | for(i = 0; i < net.num_steps; ++i){ |
| | | if(net.steps[i] > batch_num) return rate; |
| | | rate *= net.scales[i]; |
| | | //if(net.steps[i] > batch_num - 1 && net.scales[i] > 1) reset_momentum(net); |
| | | } |
| | | return rate; |
| | | case EXP: |
| | | return net.learning_rate * pow(net.gamma, batch_num); |
| | | case POLY: |
| | | if (batch_num < net.burn_in) return net.learning_rate * pow((float)batch_num / net.burn_in, net.power); |
| | | return net.learning_rate * pow(1 - (float)batch_num / net.max_batches, net.power); |
| | | case RANDOM: |
| | | return net.learning_rate * pow(rand_uniform(0,1), net.power); |
| | | case SIG: |
| | | return net.learning_rate * (1./(1.+exp(net.gamma*(batch_num - net.step)))); |
| | | default: |
| | | fprintf(stderr, "Policy is weird!\n"); |
| | | return net.learning_rate; |
| | | } |
| | | } |
| | | |
| | | char *get_layer_string(LAYER_TYPE a) |
| | | { |
| | | switch(a){ |
| | | case CONVOLUTIONAL: |
| | | return "convolutional"; |
| | | case ACTIVE: |
| | | return "activation"; |
| | | case LOCAL: |
| | | return "local"; |
| | | case DECONVOLUTIONAL: |
| | | return "deconvolutional"; |
| | | case CONNECTED: |
| | | return "connected"; |
| | | case RNN: |
| | | return "rnn"; |
| | | case GRU: |
| | | return "gru"; |
| | | case CRNN: |
| | | return "crnn"; |
| | | case MAXPOOL: |
| | | return "maxpool"; |
| | | case REORG: |
| | | return "reorg"; |
| | | case AVGPOOL: |
| | | return "avgpool"; |
| | | case SOFTMAX: |
| | | return "softmax"; |
| | | case DETECTION: |
| | | return "detection"; |
| | | case REGION: |
| | | return "region"; |
| | | case DROPOUT: |
| | | return "dropout"; |
| | | case CROP: |
| | | return "crop"; |
| | | case COST: |
| | | return "cost"; |
| | | case ROUTE: |
| | | return "route"; |
| | | case SHORTCUT: |
| | | return "shortcut"; |
| | | case NORMALIZATION: |
| | | return "normalization"; |
| | | case BATCHNORM: |
| | | return "batchnorm"; |
| | | default: |
| | | break; |
| | | } |
| | | return "none"; |
| | | } |
| | | |
| | | network make_network(int n) |
| | | { |
| | | network net = {0}; |
| | | net.n = n; |
| | | net.layers = calloc(net.n, sizeof(layer)); |
| | | net.seen = calloc(1, sizeof(int)); |
| | | #ifdef GPU |
| | | net.input_gpu = calloc(1, sizeof(float *)); |
| | | net.truth_gpu = calloc(1, sizeof(float *)); |
| | | #endif |
| | | return net; |
| | | } |
| | | |
| | | void print_convolutional_cfg(FILE *fp, convolutional_layer *l, int first) |
| | | void forward_network(network net, network_state state) |
| | | { |
| | | int i; |
| | | fprintf(fp, "[convolutional]\n"); |
| | | if(first) fprintf(fp, "batch=%d\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n", |
| | | l->batch,l->h, l->w, l->c); |
| | | fprintf(fp, "filters=%d\n" |
| | | "size=%d\n" |
| | | "stride=%d\n" |
| | | "activation=%s\n", |
| | | l->n, l->size, l->stride, |
| | | get_activation_string(l->activation)); |
| | | fprintf(fp, "data="); |
| | | for(i = 0; i < l->n; ++i) fprintf(fp, "%g,", l->biases[i]); |
| | | for(i = 0; i < l->n*l->c*l->size*l->size; ++i) fprintf(fp, "%g,", l->filters[i]); |
| | | fprintf(fp, "\n\n"); |
| | | } |
| | | void print_connected_cfg(FILE *fp, connected_layer *l, int first) |
| | | { |
| | | int i; |
| | | fprintf(fp, "[connected]\n"); |
| | | if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs); |
| | | fprintf(fp, "output=%d\n" |
| | | "activation=%s\n", |
| | | l->outputs, |
| | | get_activation_string(l->activation)); |
| | | fprintf(fp, "data="); |
| | | for(i = 0; i < l->outputs; ++i) fprintf(fp, "%g,", l->biases[i]); |
| | | for(i = 0; i < l->inputs*l->outputs; ++i) fprintf(fp, "%g,", l->weights[i]); |
| | | fprintf(fp, "\n\n"); |
| | | } |
| | | |
| | | void print_maxpool_cfg(FILE *fp, maxpool_layer *l, int first) |
| | | { |
| | | fprintf(fp, "[maxpool]\n"); |
| | | if(first) fprintf(fp, "batch=%d\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n", |
| | | l->batch,l->h, l->w, l->c); |
| | | fprintf(fp, "stride=%d\n\n", l->stride); |
| | | } |
| | | |
| | | void print_normalization_cfg(FILE *fp, normalization_layer *l, int first) |
| | | { |
| | | fprintf(fp, "[localresponsenormalization]\n"); |
| | | if(first) fprintf(fp, "batch=%d\n" |
| | | "height=%d\n" |
| | | "width=%d\n" |
| | | "channels=%d\n", |
| | | l->batch,l->h, l->w, l->c); |
| | | fprintf(fp, "size=%d\n" |
| | | "alpha=%g\n" |
| | | "beta=%g\n" |
| | | "kappa=%g\n\n", l->size, l->alpha, l->beta, l->kappa); |
| | | } |
| | | |
| | | void print_softmax_cfg(FILE *fp, softmax_layer *l, int first) |
| | | { |
| | | fprintf(fp, "[softmax]\n"); |
| | | if(first) fprintf(fp, "batch=%d\ninput=%d\n", l->batch, l->inputs); |
| | | fprintf(fp, "\n"); |
| | | } |
| | | |
| | | void save_network(network net, char *filename) |
| | | { |
| | | FILE *fp = fopen(filename, "w"); |
| | | if(!fp) file_error(filename); |
| | | int i; |
| | | for(i = 0; i < net.n; ++i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL) |
| | | print_convolutional_cfg(fp, (convolutional_layer *)net.layers[i], i==0); |
| | | else if(net.types[i] == CONNECTED) |
| | | print_connected_cfg(fp, (connected_layer *)net.layers[i], i==0); |
| | | else if(net.types[i] == MAXPOOL) |
| | | print_maxpool_cfg(fp, (maxpool_layer *)net.layers[i], i==0); |
| | | else if(net.types[i] == NORMALIZATION) |
| | | print_normalization_cfg(fp, (normalization_layer *)net.layers[i], i==0); |
| | | else if(net.types[i] == SOFTMAX) |
| | | print_softmax_cfg(fp, (softmax_layer *)net.layers[i], i==0); |
| | | } |
| | | fclose(fp); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | void forward_network(network net, float *input, int train) |
| | | { |
| | | cl_setup(); |
| | | size_t size = get_network_input_size(net); |
| | | if(!net.input_cl){ |
| | | net.input_cl = clCreateBuffer(cl.context, |
| | | CL_MEM_READ_WRITE, size*sizeof(float), 0, &cl.error); |
| | | check_error(cl); |
| | | } |
| | | cl_write_array(net.input_cl, input, size); |
| | | cl_mem input_cl = net.input_cl; |
| | | state.workspace = net.workspace; |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | forward_convolutional_layer_gpu(layer, input_cl); |
| | | input_cl = layer.output_cl; |
| | | input = layer.output; |
| | | state.index = i; |
| | | layer l = net.layers[i]; |
| | | if(l.delta){ |
| | | scal_cpu(l.outputs * l.batch, 0, l.delta, 1); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | forward_connected_layer(layer, input, train); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | forward_softmax_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | forward_maxpool_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | forward_normalization_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | l.forward(l, state); |
| | | state.input = l.output; |
| | | } |
| | | } |
| | | |
| | | #else |
| | | |
| | | void forward_network(network net, float *input, int train) |
| | | void update_network(network net) |
| | | { |
| | | int i; |
| | | int update_batch = net.batch*net.subdivisions; |
| | | float rate = get_current_rate(net); |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | forward_convolutional_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | forward_connected_layer(layer, input, train); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | forward_softmax_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | forward_maxpool_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | forward_normalization_layer(layer, input); |
| | | input = layer.output; |
| | | } |
| | | } |
| | | } |
| | | #endif |
| | | |
| | | void update_network(network net, float step, float momentum, float decay) |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | update_convolutional_layer(layer, step, momentum, decay); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | update_connected_layer(layer, step, momentum, decay); |
| | | layer l = net.layers[i]; |
| | | if(l.update){ |
| | | l.update(l, update_batch, rate, net.momentum, net.decay); |
| | | } |
| | | } |
| | | } |
| | | |
| | | float *get_network_output_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | return layer.output; |
| | | } |
| | | return 0; |
| | | } |
| | | float *get_network_output(network net) |
| | | { |
| | | return get_network_output_layer(net, net.n-1); |
| | | } |
| | | |
| | | float *get_network_delta_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.delta; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | float *get_network_delta(network net) |
| | | { |
| | | return get_network_delta_layer(net, net.n-1); |
| | | } |
| | | |
| | | float calculate_error_network(network net, float *truth) |
| | | { |
| | | float sum = 0; |
| | | float *delta = get_network_delta(net); |
| | | float *out = get_network_output(net); |
| | | #ifdef GPU |
| | | if (gpu_index >= 0) return get_network_output_gpu(net); |
| | | #endif |
| | | int i; |
| | | for(i = 0; i < get_network_output_size(net)*net.batch; ++i){ |
| | | //if(i %get_network_output_size(net) == 0) printf("\n"); |
| | | //printf("%5.2f %5.2f, ", out[i], truth[i]); |
| | | //if(i == get_network_output_size(net)) printf("\n"); |
| | | delta[i] = truth[i] - out[i]; |
| | | //printf("%.10f, ", out[i]); |
| | | sum += delta[i]*delta[i]; |
| | | for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break; |
| | | return net.layers[i].output; |
| | | } |
| | | |
| | | float get_network_cost(network net) |
| | | { |
| | | int i; |
| | | float sum = 0; |
| | | int count = 0; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.layers[i].cost){ |
| | | sum += net.layers[i].cost[0]; |
| | | ++count; |
| | | } |
| | | } |
| | | //printf("\n"); |
| | | return sum; |
| | | return sum/count; |
| | | } |
| | | |
| | | int get_predicted_class_network(network net) |
| | |
| | | return max_index(out, k); |
| | | } |
| | | |
| | | float backward_network(network net, float *input, float *truth) |
| | | void backward_network(network net, network_state state) |
| | | { |
| | | float error = calculate_error_network(net, truth); |
| | | int i; |
| | | float *prev_input; |
| | | float *prev_delta; |
| | | float *original_input = state.input; |
| | | float *original_delta = state.delta; |
| | | state.workspace = net.workspace; |
| | | for(i = net.n-1; i >= 0; --i){ |
| | | state.index = i; |
| | | if(i == 0){ |
| | | prev_input = input; |
| | | prev_delta = 0; |
| | | state.input = original_input; |
| | | state.delta = original_delta; |
| | | }else{ |
| | | prev_input = get_network_output_layer(net, i-1); |
| | | prev_delta = get_network_delta_layer(net, i-1); |
| | | layer prev = net.layers[i-1]; |
| | | state.input = prev.output; |
| | | state.delta = prev.delta; |
| | | } |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | backward_convolutional_layer(layer, prev_delta); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | if(i != 0) backward_maxpool_layer(layer, prev_input, prev_delta); |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | if(i != 0) backward_normalization_layer(layer, prev_input, prev_delta); |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | if(i != 0) backward_softmax_layer(layer, prev_input, prev_delta); |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | backward_connected_layer(layer, prev_input, prev_delta); |
| | | } |
| | | layer l = net.layers[i]; |
| | | l.backward(l, state); |
| | | } |
| | | return error; |
| | | } |
| | | |
| | | float train_network_datum(network net, float *x, float *y, float step, float momentum, float decay) |
| | | float train_network_datum(network net, float *x, float *y) |
| | | { |
| | | forward_network(net, x, 1); |
| | | //int class = get_predicted_class_network(net); |
| | | float error = backward_network(net, x, y); |
| | | update_network(net, step, momentum, decay); |
| | | //return (y[class]?1:0); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) return train_network_datum_gpu(net, x, y); |
| | | #endif |
| | | network_state state; |
| | | *net.seen += net.batch; |
| | | state.index = 0; |
| | | state.net = net; |
| | | state.input = x; |
| | | state.delta = 0; |
| | | state.truth = y; |
| | | state.train = 1; |
| | | forward_network(net, state); |
| | | backward_network(net, state); |
| | | float error = get_network_cost(net); |
| | | if(((*net.seen)/net.batch)%net.subdivisions == 0) update_network(net); |
| | | return error; |
| | | } |
| | | |
| | | float train_network_sgd(network net, data d, int n, float step, float momentum,float decay) |
| | | float train_network_sgd(network net, data d, int n) |
| | | { |
| | | int batch = net.batch; |
| | | float *X = calloc(batch*d.X.cols, sizeof(float)); |
| | | float *y = calloc(batch*d.y.cols, sizeof(float)); |
| | | |
| | | int i,j; |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | for(j = 0; j < batch; ++j){ |
| | | int index = rand()%d.X.rows; |
| | | memcpy(X+j*d.X.cols, d.X.vals[index], d.X.cols*sizeof(float)); |
| | | memcpy(y+j*d.y.cols, d.y.vals[index], d.y.cols*sizeof(float)); |
| | | } |
| | | float err = train_network_datum(net, X, y, step, momentum, decay); |
| | | get_random_batch(d, batch, X, y); |
| | | float err = train_network_datum(net, X, y); |
| | | sum += err; |
| | | //train_network_datum(net, X, y, step, momentum, decay); |
| | | /* |
| | | float *y = d.y.vals[index]; |
| | | int class = get_predicted_class_network(net); |
| | | correct += (y[class]?1:0); |
| | | */ |
| | | |
| | | /* |
| | | for(j = 0; j < d.y.cols*batch; ++j){ |
| | | printf("%6.3f ", y[j]); |
| | | } |
| | | printf("\n"); |
| | | for(j = 0; j < d.y.cols*batch; ++j){ |
| | | printf("%6.3f ", get_network_output(net)[j]); |
| | | } |
| | | printf("\n"); |
| | | printf("\n"); |
| | | */ |
| | | |
| | | |
| | | //printf("%d %f %f\n", i,net.output[0], d.y.vals[index][0]); |
| | | //if((i+1)%10 == 0){ |
| | | // printf("%d: %f\n", (i+1), (float)correct/(i+1)); |
| | | //} |
| | | } |
| | | //printf("Accuracy: %f\n",(float) correct/n); |
| | | free(X); |
| | | free(y); |
| | | return (float)sum/(n*batch); |
| | | } |
| | | float train_network_batch(network net, data d, int n, float step, float momentum,float decay) |
| | | |
| | | float train_network(network net, data d) |
| | | { |
| | | assert(d.X.rows % net.batch == 0); |
| | | int batch = net.batch; |
| | | int n = d.X.rows / batch; |
| | | float *X = calloc(batch*d.X.cols, sizeof(float)); |
| | | float *y = calloc(batch*d.y.cols, sizeof(float)); |
| | | |
| | | int i; |
| | | float sum = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | get_next_batch(d, batch, i*batch, X, y); |
| | | float err = train_network_datum(net, X, y); |
| | | sum += err; |
| | | } |
| | | free(X); |
| | | free(y); |
| | | return (float)sum/(n*batch); |
| | | } |
| | | |
| | | |
| | | float train_network_batch(network net, data d, int n) |
| | | { |
| | | int i,j; |
| | | network_state state; |
| | | state.index = 0; |
| | | state.net = net; |
| | | state.train = 1; |
| | | state.delta = 0; |
| | | float sum = 0; |
| | | int batch = 2; |
| | | for(i = 0; i < n; ++i){ |
| | | for(j = 0; j < batch; ++j){ |
| | | int index = rand()%d.X.rows; |
| | | float *x = d.X.vals[index]; |
| | | float *y = d.y.vals[index]; |
| | | forward_network(net, x, 1); |
| | | sum += backward_network(net, x, y); |
| | | state.input = d.X.vals[index]; |
| | | state.truth = d.y.vals[index]; |
| | | forward_network(net, state); |
| | | backward_network(net, state); |
| | | sum += get_network_cost(net); |
| | | } |
| | | update_network(net, step, momentum, decay); |
| | | update_network(net); |
| | | } |
| | | return (float)sum/(n*batch); |
| | | } |
| | | |
| | | |
| | | void train_network(network net, data d, float step, float momentum, float decay) |
| | | void set_batch_network(network *net, int b) |
| | | { |
| | | net->batch = b; |
| | | int i; |
| | | int correct = 0; |
| | | for(i = 0; i < d.X.rows; ++i){ |
| | | correct += train_network_datum(net, d.X.vals[i], d.y.vals[i], step, momentum, decay); |
| | | if(i%100 == 0){ |
| | | visualize_network(net); |
| | | cvWaitKey(10); |
| | | for(i = 0; i < net->n; ++i){ |
| | | net->layers[i].batch = b; |
| | | #ifdef CUDNN |
| | | if(net->layers[i].type == CONVOLUTIONAL){ |
| | | cudnn_convolutional_setup(net->layers + i); |
| | | } |
| | | #endif |
| | | } |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | fprintf(stderr, "Accuracy: %f\n", (float)correct/d.X.rows); |
| | | } |
| | | |
| | | int get_network_input_size_layer(network net, int i) |
| | | int resize_network(network *net, int w, int h) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return layer.h*layer.w*layer.c; |
| | | #ifdef GPU |
| | | cuda_set_device(net->gpu_index); |
| | | if(gpu_index >= 0){ |
| | | cuda_free(net->workspace); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return layer.h*layer.w*layer.c; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | int get_network_output_size_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | image output = get_convolutional_image(layer); |
| | | return output.h*output.w*output.c; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | image output = get_maxpool_image(layer); |
| | | return output.h*output.w*output.c; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | return layer.outputs; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | return layer.inputs; |
| | | } |
| | | return 0; |
| | | } |
| | | |
| | | int resize_network(network net, int h, int w, int c) |
| | | { |
| | | #endif |
| | | int i; |
| | | for (i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer *layer = (convolutional_layer *)net.layers[i]; |
| | | resize_convolutional_layer(layer, h, w, c); |
| | | image output = get_convolutional_image(*layer); |
| | | h = output.h; |
| | | w = output.w; |
| | | c = output.c; |
| | | }else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer *layer = (maxpool_layer *)net.layers[i]; |
| | | resize_maxpool_layer(layer, h, w, c); |
| | | image output = get_maxpool_image(*layer); |
| | | h = output.h; |
| | | w = output.w; |
| | | c = output.c; |
| | | }else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer *layer = (normalization_layer *)net.layers[i]; |
| | | resize_normalization_layer(layer, h, w, c); |
| | | image output = get_normalization_image(*layer); |
| | | h = output.h; |
| | | w = output.w; |
| | | c = output.c; |
| | | //if(w == net->w && h == net->h) return 0; |
| | | net->w = w; |
| | | net->h = h; |
| | | int inputs = 0; |
| | | size_t workspace_size = 0; |
| | | //fprintf(stderr, "Resizing to %d x %d...\n", w, h); |
| | | //fflush(stderr); |
| | | for (i = 0; i < net->n; ++i){ |
| | | layer l = net->layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | resize_convolutional_layer(&l, w, h); |
| | | }else if(l.type == CROP){ |
| | | resize_crop_layer(&l, w, h); |
| | | }else if(l.type == MAXPOOL){ |
| | | resize_maxpool_layer(&l, w, h); |
| | | }else if(l.type == REGION){ |
| | | resize_region_layer(&l, w, h); |
| | | }else if(l.type == ROUTE){ |
| | | resize_route_layer(&l, net); |
| | | }else if(l.type == REORG){ |
| | | resize_reorg_layer(&l, w, h); |
| | | }else if(l.type == AVGPOOL){ |
| | | resize_avgpool_layer(&l, w, h); |
| | | }else if(l.type == NORMALIZATION){ |
| | | resize_normalization_layer(&l, w, h); |
| | | }else if(l.type == COST){ |
| | | resize_cost_layer(&l, inputs); |
| | | }else{ |
| | | error("Cannot resize this type of layer"); |
| | | } |
| | | if(l.workspace_size > workspace_size) workspace_size = l.workspace_size; |
| | | inputs = l.outputs; |
| | | net->layers[i] = l; |
| | | w = l.out_w; |
| | | h = l.out_h; |
| | | if(l.type == AVGPOOL) break; |
| | | } |
| | | #ifdef GPU |
| | | if(gpu_index >= 0){ |
| | | if(net->input_gpu) { |
| | | cuda_free(*net->input_gpu); |
| | | *net->input_gpu = 0; |
| | | cuda_free(*net->truth_gpu); |
| | | *net->truth_gpu = 0; |
| | | } |
| | | net->workspace = cuda_make_array(0, (workspace_size-1)/sizeof(float)+1); |
| | | }else { |
| | | free(net->workspace); |
| | | net->workspace = calloc(1, workspace_size); |
| | | } |
| | | #else |
| | | free(net->workspace); |
| | | net->workspace = calloc(1, workspace_size); |
| | | #endif |
| | | //fprintf(stderr, " Done!\n"); |
| | | return 0; |
| | | } |
| | | |
| | | int get_network_output_size(network net) |
| | | { |
| | | int i = net.n-1; |
| | | return get_network_output_size_layer(net, i); |
| | | int i; |
| | | for(i = net.n-1; i > 0; --i) if(net.layers[i].type != COST) break; |
| | | return net.layers[i].outputs; |
| | | } |
| | | |
| | | int get_network_input_size(network net) |
| | | { |
| | | return get_network_input_size_layer(net, 0); |
| | | return net.layers[0].inputs; |
| | | } |
| | | |
| | | detection_layer get_network_detection_layer(network net) |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.layers[i].type == DETECTION){ |
| | | return net.layers[i]; |
| | | } |
| | | } |
| | | fprintf(stderr, "Detection layer not found!!\n"); |
| | | detection_layer l = {0}; |
| | | return l; |
| | | } |
| | | |
| | | image get_network_image_layer(network net, int i) |
| | | { |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | return get_convolutional_image(layer); |
| | | layer l = net.layers[i]; |
| | | if (l.out_w && l.out_h && l.out_c){ |
| | | return float_to_image(l.out_w, l.out_h, l.out_c, l.output); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | return get_maxpool_image(layer); |
| | | } |
| | | else if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | return get_normalization_image(layer); |
| | | } |
| | | return make_empty_image(0,0,0); |
| | | image def = {0}; |
| | | return def; |
| | | } |
| | | |
| | | image get_network_image(network net) |
| | |
| | | image m = get_network_image_layer(net, i); |
| | | if(m.h != 0) return m; |
| | | } |
| | | return make_empty_image(0,0,0); |
| | | image def = {0}; |
| | | return def; |
| | | } |
| | | |
| | | void visualize_network(network net) |
| | |
| | | char buff[256]; |
| | | for(i = 0; i < net.n; ++i){ |
| | | sprintf(buff, "Layer %d", i); |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | prev = visualize_convolutional_layer(layer, buff, prev); |
| | | } |
| | | if(net.types[i] == NORMALIZATION){ |
| | | normalization_layer layer = *(normalization_layer *)net.layers[i]; |
| | | visualize_normalization_layer(layer, buff); |
| | | layer l = net.layers[i]; |
| | | if(l.type == CONVOLUTIONAL){ |
| | | prev = visualize_convolutional_layer(l, buff, prev); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void top_predictions(network net, int k, int *index) |
| | | { |
| | | int size = get_network_output_size(net); |
| | | float *out = get_network_output(net); |
| | | top_k(out, size, k, index); |
| | | } |
| | | |
| | | |
| | | float *network_predict(network net, float *input) |
| | | { |
| | | forward_network(net, input, 0); |
| | | #ifdef GPU |
| | | if(gpu_index >= 0) return network_predict_gpu(net, input); |
| | | #endif |
| | | |
| | | network_state state; |
| | | state.net = net; |
| | | state.index = 0; |
| | | state.input = input; |
| | | state.truth = 0; |
| | | state.train = 0; |
| | | state.delta = 0; |
| | | forward_network(net, state); |
| | | float *out = get_network_output(net); |
| | | return out; |
| | | } |
| | | |
| | | matrix network_predict_data_multi(network net, data test, int n) |
| | | { |
| | | int i,j,b,m; |
| | | int k = get_network_output_size(net); |
| | | matrix pred = make_matrix(test.X.rows, k); |
| | | float *X = calloc(net.batch*test.X.rows, sizeof(float)); |
| | | for(i = 0; i < test.X.rows; i += net.batch){ |
| | | for(b = 0; b < net.batch; ++b){ |
| | | if(i+b == test.X.rows) break; |
| | | memcpy(X+b*test.X.cols, test.X.vals[i+b], test.X.cols*sizeof(float)); |
| | | } |
| | | for(m = 0; m < n; ++m){ |
| | | float *out = network_predict(net, X); |
| | | for(b = 0; b < net.batch; ++b){ |
| | | if(i+b == test.X.rows) break; |
| | | for(j = 0; j < k; ++j){ |
| | | pred.vals[i+b][j] += out[j+b*k]/n; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | free(X); |
| | | return pred; |
| | | } |
| | | |
| | | matrix network_predict_data(network net, data test) |
| | | { |
| | | int i,j,b; |
| | | int k = get_network_output_size(net); |
| | | matrix pred = make_matrix(test.X.rows, k); |
| | | float *X = calloc(net.batch*test.X.rows, sizeof(float)); |
| | | float *X = calloc(net.batch*test.X.cols, sizeof(float)); |
| | | for(i = 0; i < test.X.rows; i += net.batch){ |
| | | for(b = 0; b < net.batch; ++b){ |
| | | if(i+b == test.X.rows) break; |
| | |
| | | { |
| | | int i,j; |
| | | for(i = 0; i < net.n; ++i){ |
| | | float *output = 0; |
| | | int n = 0; |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | output = layer.output; |
| | | image m = get_convolutional_image(layer); |
| | | n = m.h*m.w*m.c; |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | | output = layer.output; |
| | | image m = get_maxpool_image(layer); |
| | | n = m.h*m.w*m.c; |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | output = layer.output; |
| | | n = layer.outputs; |
| | | } |
| | | else if(net.types[i] == SOFTMAX){ |
| | | softmax_layer layer = *(softmax_layer *)net.layers[i]; |
| | | output = layer.output; |
| | | n = layer.inputs; |
| | | } |
| | | layer l = net.layers[i]; |
| | | float *output = l.output; |
| | | int n = l.outputs; |
| | | float mean = mean_array(output, n); |
| | | float vari = variance_array(output, n); |
| | | fprintf(stderr, "Layer %d - Mean: %f, Variance: %f\n",i,mean, vari); |
| | |
| | | } |
| | | } |
| | | |
| | | void compare_networks(network n1, network n2, data test) |
| | | { |
| | | matrix g1 = network_predict_data(n1, test); |
| | | matrix g2 = network_predict_data(n2, test); |
| | | int i; |
| | | int a,b,c,d; |
| | | a = b = c = d = 0; |
| | | for(i = 0; i < g1.rows; ++i){ |
| | | int truth = max_index(test.y.vals[i], test.y.cols); |
| | | int p1 = max_index(g1.vals[i], g1.cols); |
| | | int p2 = max_index(g2.vals[i], g2.cols); |
| | | if(p1 == truth){ |
| | | if(p2 == truth) ++d; |
| | | else ++c; |
| | | }else{ |
| | | if(p2 == truth) ++b; |
| | | else ++a; |
| | | } |
| | | } |
| | | printf("%5d %5d\n%5d %5d\n", a, b, c, d); |
| | | float num = pow((abs(b - c) - 1.), 2.); |
| | | float den = b + c; |
| | | printf("%f\n", num/den); |
| | | } |
| | | |
| | | float network_accuracy(network net, data d) |
| | | { |
| | | matrix guess = network_predict_data(net, d); |
| | | float acc = matrix_accuracy(d.y, guess); |
| | | float acc = matrix_topk_accuracy(d.y, guess,1); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |
| | | |
| | | float *network_accuracies(network net, data d, int n) |
| | | { |
| | | static float acc[2]; |
| | | matrix guess = network_predict_data(net, d); |
| | | acc[0] = matrix_topk_accuracy(d.y, guess, 1); |
| | | acc[1] = matrix_topk_accuracy(d.y, guess, n); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |
| | | |
| | | float network_accuracy_multi(network net, data d, int n) |
| | | { |
| | | matrix guess = network_predict_data_multi(net, d, n); |
| | | float acc = matrix_topk_accuracy(d.y, guess,1); |
| | | free_matrix(guess); |
| | | return acc; |
| | | } |
| | | |
| | | void free_network(network net) |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | free_layer(net.layers[i]); |
| | | } |
| | | free(net.layers); |
| | | #ifdef GPU |
| | | if(*net.input_gpu) cuda_free(*net.input_gpu); |
| | | if(*net.truth_gpu) cuda_free(*net.truth_gpu); |
| | | if(net.input_gpu) free(net.input_gpu); |
| | | if(net.truth_gpu) free(net.truth_gpu); |
| | | #endif |
| | | } |