| | |
| | | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | image get_image_from_stream(CvCapture *cap); |
| | | #endif |
| | | |
| | | list *read_data_cfg(char *filename) |
| | |
| | | return options; |
| | | } |
| | | |
| | | void hierarchy_predictions(float *predictions, int n, tree *hier, int only_leaves) |
| | | { |
| | | int j; |
| | | for(j = 0; j < n; ++j){ |
| | | int parent = hier->parent[j]; |
| | | if(parent >= 0){ |
| | | predictions[j] *= predictions[parent]; |
| | | } |
| | | } |
| | | if(only_leaves){ |
| | | for(j = 0; j < n; ++j){ |
| | | if(!hier->leaf[j]) predictions[j] = 0; |
| | | } |
| | | } |
| | | } |
| | | |
| | | float *get_regression_values(char **labels, int n) |
| | | { |
| | | float *v = calloc(n, sizeof(float)); |
| | |
| | | #ifdef GPU |
| | | int i; |
| | | |
| | | srand(time(0)); |
| | | float avg_loss = -1; |
| | | char *base = basecfg(cfgfile); |
| | | printf("%s\n", base); |
| | | printf("%d\n", ngpus); |
| | | network *nets = calloc(ngpus, sizeof(network)); |
| | | |
| | | srand(time(0)); |
| | | int seed = rand(); |
| | | for(i = 0; i < ngpus; ++i){ |
| | | srand(seed); |
| | | cuda_set_device(gpus[i]); |
| | | nets[i] = parse_network_cfg(cfgfile); |
| | | if(clear) *nets[i].seen = 0; |
| | | if(weightfile){ |
| | | load_weights(&nets[i], weightfile); |
| | | } |
| | | } |
| | | network net = nets[0]; |
| | | for(i = 0; i < ngpus; ++i){ |
| | | *nets[i].seen = *net.seen; |
| | | if(clear) *nets[i].seen = 0; |
| | | nets[i].learning_rate *= ngpus; |
| | | } |
| | | srand(time(0)); |
| | | network net = nets[0]; |
| | | |
| | | int imgs = net.batch * net.subdivisions * ngpus; |
| | | |
| | |
| | | load_args args = {0}; |
| | | args.w = net.w; |
| | | args.h = net.h; |
| | | args.threads = 16; |
| | | args.threads = 32; |
| | | args.hierarchy = net.hierarchy; |
| | | |
| | | args.min = net.min_crop; |
| | | args.max = net.max_crop; |
| | |
| | | args.saturation = net.saturation; |
| | | args.hue = net.hue; |
| | | args.size = net.w; |
| | | args.hierarchy = net.hierarchy; |
| | | |
| | | args.paths = paths; |
| | | args.classes = classes; |
| | |
| | | float *pred = calloc(classes, sizeof(float)); |
| | | for(j = 0; j < 10; ++j){ |
| | | float *p = network_predict(net, images[j].data); |
| | | if(net.hierarchy) hierarchy_predictions(p, net.outputs, net.hierarchy, 1); |
| | | axpy_cpu(classes, 1, p, 1, pred, 1); |
| | | free_image(images[j]); |
| | | } |
| | |
| | | //show_image(crop, "cropped"); |
| | | //cvWaitKey(0); |
| | | float *pred = network_predict(net, resized.data); |
| | | if(net.hierarchy) hierarchy_predictions(pred, net.outputs, net.hierarchy, 1); |
| | | |
| | | free_image(im); |
| | | free_image(resized); |
| | |
| | | } |
| | | } |
| | | |
| | | void change_leaves(tree *t, char *leaf_list) |
| | | { |
| | | list *llist = get_paths(leaf_list); |
| | | char **leaves = (char **)list_to_array(llist); |
| | | int n = llist->size; |
| | | int i,j; |
| | | int found = 0; |
| | | for(i = 0; i < t->n; ++i){ |
| | | t->leaf[i] = 0; |
| | | for(j = 0; j < n; ++j){ |
| | | if (0==strcmp(t->name[i], leaves[j])){ |
| | | t->leaf[i] = 1; |
| | | ++found; |
| | | break; |
| | | } |
| | | } |
| | | } |
| | | fprintf(stderr, "Found %d leaves.\n", found); |
| | | } |
| | | |
| | | |
| | | void validate_classifier_single(char *datacfg, char *filename, char *weightfile) |
| | | { |
| | |
| | | list *options = read_data_cfg(datacfg); |
| | | |
| | | char *label_list = option_find_str(options, "labels", "data/labels.list"); |
| | | char *leaf_list = option_find_str(options, "leaves", 0); |
| | | if(leaf_list) change_leaves(net.hierarchy, leaf_list); |
| | | char *valid_list = option_find_str(options, "valid", "data/train.list"); |
| | | int classes = option_find_int(options, "classes", 2); |
| | | int topk = option_find_int(options, "top", 1); |
| | |
| | | //show_image(crop, "cropped"); |
| | | //cvWaitKey(0); |
| | | float *pred = network_predict(net, crop.data); |
| | | if(net.hierarchy) hierarchy_predictions(pred, net.outputs, net.hierarchy, 1); |
| | | |
| | | if(resized.data != im.data) free_image(resized); |
| | | free_image(im); |
| | |
| | | image r = resize_min(im, scales[j]); |
| | | resize_network(&net, r.w, r.h); |
| | | float *p = network_predict(net, r.data); |
| | | if(net.hierarchy) hierarchy_predictions(p, net.outputs, net.hierarchy, 1); |
| | | axpy_cpu(classes, 1, p, 1, pred, 1); |
| | | flip_image(r); |
| | | p = network_predict(net, r.data); |
| | |
| | | } |
| | | } |
| | | |
| | | |
| | | void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename) |
| | | void predict_classifier(char *datacfg, char *cfgfile, char *weightfile, char *filename, int top) |
| | | { |
| | | network net = parse_network_cfg(cfgfile); |
| | | if(weightfile){ |
| | |
| | | |
| | | char *name_list = option_find_str(options, "names", 0); |
| | | if(!name_list) name_list = option_find_str(options, "labels", "data/labels.list"); |
| | | int top = option_find_int(options, "top", 1); |
| | | if(top == 0) top = option_find_int(options, "top", 1); |
| | | |
| | | int i = 0; |
| | | char **names = get_labels(name_list); |
| | |
| | | float *X = r.data; |
| | | time=clock(); |
| | | float *predictions = network_predict(net, X); |
| | | top_predictions(net, top, indexes); |
| | | if(net.hierarchy) hierarchy_predictions(predictions, net.outputs, net.hierarchy, 0); |
| | | top_k(predictions, net.outputs, top, indexes); |
| | | printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time)); |
| | | for(i = 0; i < top; ++i){ |
| | | int index = indexes[i]; |
| | | printf("%s: %f\n", names[index], predictions[index]); |
| | | if(net.hierarchy) printf("%d, %s: %f, parent: %s \n",index, names[index], predictions[index], (net.hierarchy->parent[index] >= 0) ? names[net.hierarchy->parent[index]] : "Root"); |
| | | else printf("%s: %f\n",names[index], predictions[index]); |
| | | } |
| | | if(r.data != im.data) free_image(r); |
| | | free_image(im); |
| | |
| | | float curr_threat = 0; |
| | | if(1){ |
| | | curr_threat = predictions[0] * 0 + |
| | | predictions[1] * .6 + |
| | | predictions[2]; |
| | | predictions[1] * .6 + |
| | | predictions[2]; |
| | | } else { |
| | | curr_threat = predictions[218] + |
| | | predictions[539] + |
| | | predictions[540] + |
| | | predictions[368] + |
| | | predictions[369] + |
| | | predictions[370]; |
| | | predictions[539] + |
| | | predictions[540] + |
| | | predictions[368] + |
| | | predictions[369] + |
| | | predictions[370]; |
| | | } |
| | | threat = roll * curr_threat + (1-roll) * threat; |
| | | |
| | |
| | | show_image(in, "Classifier"); |
| | | |
| | | float *predictions = network_predict(net, in_s.data); |
| | | if(net.hierarchy) hierarchy_predictions(predictions, net.outputs, net.hierarchy, 1); |
| | | top_predictions(net, top, indexes); |
| | | |
| | | printf("\033[2J"); |
| | |
| | | } |
| | | |
| | | int cam_index = find_int_arg(argc, argv, "-c", 0); |
| | | int top = find_int_arg(argc, argv, "-t", 0); |
| | | int clear = find_arg(argc, argv, "-clear"); |
| | | char *data = argv[3]; |
| | | char *cfg = argv[4]; |
| | |
| | | char *filename = (argc > 6) ? argv[6]: 0; |
| | | char *layer_s = (argc > 7) ? argv[7]: 0; |
| | | int layer = layer_s ? atoi(layer_s) : -1; |
| | | if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename); |
| | | if(0==strcmp(argv[2], "predict")) predict_classifier(data, cfg, weights, filename, top); |
| | | else if(0==strcmp(argv[2], "try")) try_classifier(data, cfg, weights, filename, atoi(layer_s)); |
| | | else if(0==strcmp(argv[2], "train")) train_classifier(data, cfg, weights, clear); |
| | | else if(0==strcmp(argv[2], "trainm")) train_classifier_multi(data, cfg, weights, gpus, ngpus, clear); |