| | |
| | | #include "cuda_runtime.h" |
| | | #include "curand.h" |
| | | #include "cublas_v2.h" |
| | | |
| | | extern "C" { |
| | | #include "convolutional_layer.h" |
| | | #include "batchnorm_layer.h" |
| | | #include "gemm.h" |
| | | #include "blas.h" |
| | | #include "im2col.h" |
| | |
| | | #include "cuda.h" |
| | | } |
| | | |
| | | __global__ void bias_output_kernel(float *output, float *biases, int n, int size) |
| | | __global__ void binarize_kernel(float *x, int n, float *binary) |
| | | { |
| | | int offset = blockIdx.x * blockDim.x + threadIdx.x; |
| | | int filter = blockIdx.y % n; |
| | | int batch = blockIdx.y / n; |
| | | |
| | | if(offset < size) output[(batch*n+filter)*size + offset] = biases[filter]; |
| | | int i = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if (i >= n) return; |
| | | binary[i] = (x[i] >= 0) ? 1 : -1; |
| | | } |
| | | |
| | | void bias_output_gpu(float *output, float *biases, int batch, int n, int size) |
| | | void binarize_gpu(float *x, int n, float *binary) |
| | | { |
| | | dim3 dimGrid((size-1)/BLOCK + 1, n*batch, 1); |
| | | dim3 dimBlock(BLOCK, 1, 1); |
| | | |
| | | bias_output_kernel<<<dimGrid, dimBlock>>>(output, biases, n, size); |
| | | binarize_kernel<<<cuda_gridsize(n), BLOCK>>>(x, n, binary); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | __global__ void backward_bias_kernel(float *bias_updates, float *delta, int batch, int n, int size, float scale) |
| | | __global__ void binarize_input_kernel(float *input, int n, int size, float *binary) |
| | | { |
| | | __shared__ float part[BLOCK]; |
| | | int i,b; |
| | | int filter = blockIdx.x; |
| | | int p = threadIdx.x; |
| | | float sum = 0; |
| | | for(b = 0; b < batch; ++b){ |
| | | for(i = 0; i < size; i += BLOCK){ |
| | | int index = p + i + size*(filter + n*b); |
| | | sum += (p+i < size) ? delta[index] : 0; |
| | | } |
| | | int s = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if (s >= size) return; |
| | | int i = 0; |
| | | float mean = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | mean += abs(input[i*size + s]); |
| | | } |
| | | part[p] = sum; |
| | | __syncthreads(); |
| | | if(p == 0){ |
| | | for(i = 0; i < BLOCK; ++i) bias_updates[filter] += scale * part[i]; |
| | | mean = mean / n; |
| | | for(i = 0; i < n; ++i){ |
| | | binary[i*size + s] = (input[i*size + s] > 0) ? mean : -mean; |
| | | } |
| | | } |
| | | |
| | | void backward_bias_gpu(float *bias_updates, float *delta, int batch, int n, int size) |
| | | void binarize_input_gpu(float *input, int n, int size, float *binary) |
| | | { |
| | | backward_bias_kernel<<<n, BLOCK>>>(bias_updates, delta, batch, n, size, 1); |
| | | binarize_input_kernel<<<cuda_gridsize(size), BLOCK>>>(input, n, size, binary); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state) |
| | | |
| | | __global__ void binarize_weights_kernel(float *weights, int n, int size, float *binary) |
| | | { |
| | | int f = (blockIdx.x + blockIdx.y*gridDim.x) * blockDim.x + threadIdx.x; |
| | | if (f >= n) return; |
| | | int i = 0; |
| | | float mean = 0; |
| | | for(i = 0; i < size; ++i){ |
| | | mean += abs(weights[f*size + i]); |
| | | } |
| | | mean = mean / size; |
| | | for(i = 0; i < size; ++i){ |
| | | binary[f*size + i] = (weights[f*size + i] > 0) ? mean : -mean; |
| | | //binary[f*size + i] = weights[f*size + i]; |
| | | } |
| | | } |
| | | |
| | | void binarize_weights_gpu(float *weights, int n, int size, float *binary) |
| | | { |
| | | binarize_weights_kernel<<<cuda_gridsize(n), BLOCK>>>(weights, n, size, binary); |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | void forward_convolutional_layer_gpu(convolutional_layer l, network_state state) |
| | | { |
| | | fill_ongpu(l.outputs*l.batch, 0, l.output_gpu, 1); |
| | | if(l.binary){ |
| | | binarize_weights_gpu(l.weights_gpu, l.n, l.c*l.size*l.size, l.binary_weights_gpu); |
| | | swap_binary(&l); |
| | | } |
| | | |
| | | if(l.xnor){ |
| | | binarize_weights_gpu(l.weights_gpu, l.n, l.c*l.size*l.size, l.binary_weights_gpu); |
| | | swap_binary(&l); |
| | | binarize_gpu(state.input, l.c*l.h*l.w*l.batch, l.binary_input_gpu); |
| | | state.input = l.binary_input_gpu; |
| | | } |
| | | |
| | | #ifdef CUDNN |
| | | float one = 1; |
| | | cudnnConvolutionForward(cudnn_handle(), |
| | | &one, |
| | | l.srcTensorDesc, |
| | | state.input, |
| | | l.weightDesc, |
| | | l.weights_gpu, |
| | | l.convDesc, |
| | | l.fw_algo, |
| | | state.workspace, |
| | | l.workspace_size, |
| | | &one, |
| | | l.dstTensorDesc, |
| | | l.output_gpu); |
| | | |
| | | #else |
| | | int i; |
| | | int m = layer.n; |
| | | int k = layer.size*layer.size*layer.c; |
| | | int n = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer); |
| | | |
| | | bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n); |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu); |
| | | float * a = layer.filters_gpu; |
| | | float * b = layer.col_image_gpu; |
| | | float * c = layer.output_gpu; |
| | | int m = l.n; |
| | | int k = l.size*l.size*l.c; |
| | | int n = l.out_w*l.out_h; |
| | | for(i = 0; i < l.batch; ++i){ |
| | | im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace); |
| | | float * a = l.weights_gpu; |
| | | float * b = state.workspace; |
| | | float * c = l.output_gpu; |
| | | gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n); |
| | | } |
| | | activate_array_ongpu(layer.output_gpu, m*n*layer.batch, layer.activation); |
| | | #endif |
| | | |
| | | if (l.batch_normalize) { |
| | | forward_batchnorm_layer_gpu(l, state); |
| | | } |
| | | add_bias_gpu(l.output_gpu, l.biases_gpu, l.batch, l.n, l.out_w*l.out_h); |
| | | |
| | | activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); |
| | | //if(l.dot > 0) dot_error_gpu(l); |
| | | if(l.binary || l.xnor) swap_binary(&l); |
| | | } |
| | | |
| | | void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state) |
| | | void backward_convolutional_layer_gpu(convolutional_layer l, network_state state) |
| | | { |
| | | gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); |
| | | |
| | | backward_bias_gpu(l.bias_updates_gpu, l.delta_gpu, l.batch, l.n, l.out_w*l.out_h); |
| | | |
| | | if(l.batch_normalize){ |
| | | backward_batchnorm_layer_gpu(l, state); |
| | | } |
| | | float *original_input = state.input; |
| | | |
| | | if(l.xnor) state.input = l.binary_input_gpu; |
| | | #ifdef CUDNN |
| | | float one = 1; |
| | | cudnnConvolutionBackwardFilter(cudnn_handle(), |
| | | &one, |
| | | l.srcTensorDesc, |
| | | state.input, |
| | | l.ddstTensorDesc, |
| | | l.delta_gpu, |
| | | l.convDesc, |
| | | l.bf_algo, |
| | | state.workspace, |
| | | l.workspace_size, |
| | | &one, |
| | | l.dweightDesc, |
| | | l.weight_updates_gpu); |
| | | |
| | | if(state.delta){ |
| | | if(l.binary || l.xnor) swap_binary(&l); |
| | | cudnnConvolutionBackwardData(cudnn_handle(), |
| | | &one, |
| | | l.weightDesc, |
| | | l.weights_gpu, |
| | | l.ddstTensorDesc, |
| | | l.delta_gpu, |
| | | l.convDesc, |
| | | l.bd_algo, |
| | | state.workspace, |
| | | l.workspace_size, |
| | | &one, |
| | | l.dsrcTensorDesc, |
| | | state.delta); |
| | | if(l.binary || l.xnor) swap_binary(&l); |
| | | if(l.xnor) gradient_array_ongpu(original_input, l.batch*l.c*l.h*l.w, HARDTAN, state.delta); |
| | | } |
| | | |
| | | #else |
| | | int m = l.n; |
| | | int n = l.size*l.size*l.c; |
| | | int k = l.out_w*l.out_h; |
| | | |
| | | int i; |
| | | int m = layer.n; |
| | | int n = layer.size*layer.size*layer.c; |
| | | int k = convolutional_out_height(layer)* |
| | | convolutional_out_width(layer); |
| | | for(i = 0; i < l.batch; ++i){ |
| | | float * a = l.delta_gpu; |
| | | float * b = state.workspace; |
| | | float * c = l.weight_updates_gpu; |
| | | |
| | | gradient_array_ongpu(layer.output_gpu, m*k*layer.batch, layer.activation, layer.delta_gpu); |
| | | backward_bias_gpu(layer.bias_updates_gpu, layer.delta_gpu, layer.batch, layer.n, k); |
| | | |
| | | if(state.delta) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, state.delta, 1); |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | float * a = layer.delta_gpu; |
| | | float * b = layer.col_image_gpu; |
| | | float * c = layer.filter_updates_gpu; |
| | | |
| | | im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu); |
| | | im2col_ongpu(state.input + i*l.c*l.h*l.w, l.c, l.h, l.w, l.size, l.stride, l.pad, state.workspace); |
| | | gemm_ongpu(0,1,m,n,k,1,a + i*m*k,k,b,k,1,c,n); |
| | | |
| | | if(state.delta){ |
| | | |
| | | float * a = layer.filters_gpu; |
| | | float * b = layer.delta_gpu; |
| | | float * c = layer.col_image_gpu; |
| | | if(l.binary || l.xnor) swap_binary(&l); |
| | | float * a = l.weights_gpu; |
| | | float * b = l.delta_gpu; |
| | | float * c = state.workspace; |
| | | |
| | | gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k); |
| | | |
| | | col2im_ongpu(layer.col_image_gpu, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, state.delta + i*layer.c*layer.h*layer.w); |
| | | col2im_ongpu(state.workspace, l.c, l.h, l.w, l.size, l.stride, l.pad, state.delta + i*l.c*l.h*l.w); |
| | | if(l.binary || l.xnor) { |
| | | swap_binary(&l); |
| | | } |
| | | if(l.xnor) gradient_array_ongpu(original_input + i*l.c*l.h*l.w, l.c*l.h*l.w, HARDTAN, state.delta + i*l.c*l.h*l.w); |
| | | } |
| | | } |
| | | #endif |
| | | } |
| | | |
| | | void pull_convolutional_layer(convolutional_layer layer) |
| | | { |
| | | cuda_pull_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size); |
| | | cuda_pull_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size); |
| | | cuda_pull_array(layer.biases_gpu, layer.biases, layer.n); |
| | | cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size); |
| | | cuda_pull_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size); |
| | | cuda_pull_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); |
| | | if (layer.batch_normalize){ |
| | | cuda_pull_array(layer.scales_gpu, layer.scales, layer.n); |
| | | cuda_pull_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n); |
| | | cuda_pull_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n); |
| | | } |
| | | } |
| | | |
| | | void push_convolutional_layer(convolutional_layer layer) |
| | | { |
| | | cuda_push_array(layer.filters_gpu, layer.filters, layer.c*layer.n*layer.size*layer.size); |
| | | cuda_push_array(layer.weights_gpu, layer.weights, layer.c*layer.n*layer.size*layer.size); |
| | | cuda_push_array(layer.biases_gpu, layer.biases, layer.n); |
| | | cuda_push_array(layer.filter_updates_gpu, layer.filter_updates, layer.c*layer.n*layer.size*layer.size); |
| | | cuda_push_array(layer.weight_updates_gpu, layer.weight_updates, layer.c*layer.n*layer.size*layer.size); |
| | | cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); |
| | | if (layer.batch_normalize){ |
| | | cuda_push_array(layer.scales_gpu, layer.scales, layer.n); |
| | | cuda_push_array(layer.rolling_mean_gpu, layer.rolling_mean, layer.n); |
| | | cuda_push_array(layer.rolling_variance_gpu, layer.rolling_variance, layer.n); |
| | | } |
| | | } |
| | | |
| | | void update_convolutional_layer_gpu(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay) |
| | | { |
| | | int size = layer.size*layer.size*layer.c*layer.n; |
| | | |
| | | axpy_ongpu(layer.n, learning_rate/batch, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); |
| | | scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1); |
| | | |
| | | axpy_ongpu(size, -decay*batch, layer.filters_gpu, 1, layer.filter_updates_gpu, 1); |
| | | axpy_ongpu(size, learning_rate/batch, layer.filter_updates_gpu, 1, layer.filters_gpu, 1); |
| | | scal_ongpu(size, momentum, layer.filter_updates_gpu, 1); |
| | | if(layer.scales_gpu){ |
| | | axpy_ongpu(layer.n, learning_rate/batch, layer.scale_updates_gpu, 1, layer.scales_gpu, 1); |
| | | scal_ongpu(layer.n, momentum, layer.scale_updates_gpu, 1); |
| | | } |
| | | |
| | | if(layer.adam){ |
| | | scal_ongpu(size, layer.B1, layer.m_gpu, 1); |
| | | scal_ongpu(size, layer.B2, layer.v_gpu, 1); |
| | | |
| | | axpy_ongpu(size, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); |
| | | |
| | | axpy_ongpu(size, -(1-layer.B1), layer.weight_updates_gpu, 1, layer.m_gpu, 1); |
| | | mul_ongpu(size, layer.weight_updates_gpu, 1, layer.weight_updates_gpu, 1); |
| | | axpy_ongpu(size, (1-layer.B2), layer.weight_updates_gpu, 1, layer.v_gpu, 1); |
| | | |
| | | adam_gpu(size, layer.weights_gpu, layer.m_gpu, layer.v_gpu, layer.B1, layer.B2, learning_rate/batch, layer.eps, layer.t+1); |
| | | fill_ongpu(size, 0, layer.weight_updates_gpu, 1); |
| | | }else{ |
| | | axpy_ongpu(size, -decay*batch, layer.weights_gpu, 1, layer.weight_updates_gpu, 1); |
| | | axpy_ongpu(size, learning_rate/batch, layer.weight_updates_gpu, 1, layer.weights_gpu, 1); |
| | | scal_ongpu(size, momentum, layer.weight_updates_gpu, 1); |
| | | } |
| | | } |
| | | |
| | | |