| | |
| | | #ifdef OPENCV |
| | | #include "opencv2/highgui/highgui_c.h" |
| | | #include "opencv2/core/core_c.h" |
| | | //#include "opencv2/core/core.hpp" |
| | | #include "opencv2/core/version.hpp" |
| | | #include "opencv2/imgproc/imgproc_c.h" |
| | | |
| | | #ifndef CV_VERSION_EPOCH |
| | | #include "opencv2/videoio/videoio_c.h" |
| | |
| | | #pragma comment(lib, "opencv_highgui" OPENCV_VERSION ".lib") |
| | | #endif |
| | | |
| | | #endif |
| | | IplImage* draw_train_chart(float max_img_loss, int max_batches, int number_of_lines, int img_size); |
| | | void draw_train_loss(IplImage* img, int img_size, float avg_loss, float max_img_loss, int current_batch, int max_batches); |
| | | #endif // OPENCV |
| | | |
| | | static int coco_ids[] = {1,2,3,4,5,6,7,8,9,10,11,13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,31,32,33,34,35,36,37,38,39,40,41,42,43,44,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,67,70,72,73,74,75,76,77,78,79,80,81,82,84,85,86,87,88,89,90}; |
| | | |
| | | void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear) |
| | | void train_detector(char *datacfg, char *cfgfile, char *weightfile, int *gpus, int ngpus, int clear, int dont_show) |
| | | { |
| | | list *options = read_data_cfg(datacfg); |
| | | char *train_images = option_find_str(options, "train", "data/train.list"); |
| | |
| | | float avg_loss = -1; |
| | | network *nets = calloc(ngpus, sizeof(network)); |
| | | |
| | | int iter_save; |
| | | iter_save = 100; |
| | | |
| | | srand(time(0)); |
| | | int seed = rand(); |
| | | int i; |
| | |
| | | args.small_object = l.small_object; |
| | | args.d = &buffer; |
| | | args.type = DETECTION_DATA; |
| | | args.threads = 4;// 8; |
| | | args.threads = 8; // 64 |
| | | |
| | | args.angle = net.angle; |
| | | args.exposure = net.exposure; |
| | | args.saturation = net.saturation; |
| | | args.hue = net.hue; |
| | | |
| | | #ifdef OPENCV |
| | | IplImage* img = NULL; |
| | | float max_img_loss = 5; |
| | | int number_of_lines = 100; |
| | | int img_size = 1000; |
| | | if (!dont_show) |
| | | img = draw_train_chart(max_img_loss, net.max_batches, number_of_lines, img_size); |
| | | #endif //OPENCV |
| | | |
| | | pthread_t load_thread = load_data(args); |
| | | clock_t time; |
| | | int count = 0; |
| | |
| | | if(l.random && count++%10 == 0){ |
| | | printf("Resizing\n"); |
| | | int dim = (rand() % 12 + (init_w/32 - 5)) * 32; // +-160 |
| | | //int dim = (rand() % 10 + 10) * 32; |
| | | //if (get_current_batch(net)+100 > net.max_batches) dim = 544; |
| | | //int dim = (rand() % 4 + 16) * 32; |
| | | printf("%d\n", dim); |
| | |
| | | |
| | | i = get_current_batch(net); |
| | | printf("%d: %f, %f avg, %f rate, %lf seconds, %d images\n", get_current_batch(net), loss, avg_loss, get_current_rate(net), sec(clock()-time), i*imgs); |
| | | |
| | | #ifdef OPENCV |
| | | if(!dont_show) |
| | | draw_train_loss(img, img_size, avg_loss, max_img_loss, i, net.max_batches); |
| | | #endif // OPENCV |
| | | |
| | | //if (i % 1000 == 0 || (i < 1000 && i % 100 == 0)) { |
| | | if (i % 100 == 0) { |
| | | //if (i % 100 == 0) { |
| | | if(i >= iter_save) { |
| | | iter_save += 100; |
| | | #ifdef GPU |
| | | if (ngpus != 1) sync_nets(nets, ngpus, 0); |
| | | #endif |
| | |
| | | char buff[256]; |
| | | sprintf(buff, "%s/%s_final.weights", backup_directory, base); |
| | | save_weights(net, buff); |
| | | |
| | | //cvReleaseImage(&img); |
| | | //cvDestroyAllWindows(); |
| | | } |
| | | |
| | | |
| | |
| | | if (ymax > h) ymax = h; |
| | | |
| | | for(j = 0; j < classes; ++j){ |
| | | int class = j; |
| | | if (probs[i][class]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, probs[i][class], |
| | | int class_id = j; |
| | | if (probs[i][class_id]) fprintf(fp, "%d %d %f %f %f %f %f\n", id, j+1, probs[i][class_id], |
| | | xmin, ymin, xmax, ymax); |
| | | } |
| | | } |
| | |
| | | return 0; |
| | | } |
| | | |
| | | void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile) |
| | | void validate_detector_map(char *datacfg, char *cfgfile, char *weightfile, float thresh_calc_avg_iou) |
| | | { |
| | | int j; |
| | | list *options = read_data_cfg(datacfg); |
| | |
| | | args.h = net.h; |
| | | args.type = IMAGE_DATA; |
| | | |
| | | //const float thresh_calc_avg_iou = 0.24; |
| | | float avg_iou = 0; |
| | | int tp_for_thresh = 0; |
| | | int fp_for_thresh = 0; |
| | | |
| | | box_prob *detections = calloc(1, sizeof(box_prob)); |
| | | int detections_count = 0; |
| | | int unique_truth_index = 0; |
| | | int unique_truth_count = 0; |
| | | |
| | | int *truth_classes_count = calloc(classes, sizeof(int)); |
| | | |
| | |
| | | if (current_iou > iou_thresh && class_id == truth[j].id) { |
| | | if (current_iou > max_iou) { |
| | | max_iou = current_iou; |
| | | truth_index = unique_truth_index + j; |
| | | truth_index = unique_truth_count + j; |
| | | } |
| | | } |
| | | } |
| | |
| | | float current_iou = box_iou(boxes[i], t); |
| | | if (current_iou > iou_thresh && class_id == truth_dif[j].id) { |
| | | --detections_count; |
| | | break; |
| | | } |
| | | } |
| | | } |
| | | |
| | | // calc avg IoU, true-positives, false-positives for required Threshold |
| | | if (prob > thresh_calc_avg_iou) { |
| | | if (truth_index > -1) { |
| | | avg_iou += max_iou; |
| | | ++tp_for_thresh; |
| | | } |
| | | else |
| | | fp_for_thresh++; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | unique_truth_index += num_labels; |
| | | unique_truth_count += num_labels; |
| | | |
| | | free(id); |
| | | free_image(val[t]); |
| | |
| | | } |
| | | } |
| | | |
| | | avg_iou = avg_iou / (tp_for_thresh + fp_for_thresh); |
| | | |
| | | |
| | | // SORT(detections) |
| | | qsort(detections, detections_count, sizeof(box_prob), detections_comparator); |
| | |
| | | for (i = 0; i < classes; ++i) { |
| | | pr[i] = calloc(detections_count, sizeof(pr_t)); |
| | | } |
| | | printf("detections_count = %d, unique_truth_index = %d \n", detections_count, unique_truth_index); |
| | | printf("detections_count = %d, unique_truth_count = %d \n", detections_count, unique_truth_count); |
| | | |
| | | |
| | | int *truth_flags = calloc(unique_truth_index, sizeof(int)); |
| | | int *truth_flags = calloc(unique_truth_count, sizeof(int)); |
| | | |
| | | int rank; |
| | | for (rank = 0; rank < detections_count; ++rank) { |
| | |
| | | } |
| | | } |
| | | } |
| | | //printf("point = %d, cur_recall = %.4f, cur_precision = %.4f \n", point, cur_recall, cur_precision); |
| | | //printf("class_id = %d, point = %d, cur_recall = %.4f, cur_precision = %.4f \n", i, point, cur_recall, cur_precision); |
| | | |
| | | avg_precision += cur_precision; |
| | | } |
| | | avg_precision = avg_precision / 11; |
| | | printf("class = %d, name = %s, \t ap = %2.2f %% \n", i, names[i], avg_precision*100); |
| | | printf("class_id = %d, name = %s, \t ap = %2.2f %% \n", i, names[i], avg_precision*100); |
| | | mean_average_precision += avg_precision; |
| | | } |
| | | |
| | | const float cur_precision = (float)tp_for_thresh / ((float)tp_for_thresh + (float)fp_for_thresh); |
| | | const float cur_recall = (float)tp_for_thresh / ((float)tp_for_thresh + (float)(unique_truth_count - tp_for_thresh)); |
| | | const float f1_score = 2.F * cur_precision * cur_recall / (cur_precision + cur_recall); |
| | | printf(" for thresh = %1.2f, precision = %1.2f, recall = %1.2f, F1-score = %1.2f \n", |
| | | thresh_calc_avg_iou, cur_precision, cur_recall, f1_score); |
| | | |
| | | printf(" for thresh = %0.2f, TP = %d, FP = %d, FN = %d, average IoU = %2.2f %% \n", |
| | | thresh_calc_avg_iou, tp_for_thresh, fp_for_thresh, unique_truth_count - tp_for_thresh, avg_iou * 100); |
| | | |
| | | mean_average_precision = mean_average_precision / classes; |
| | | printf("\n mean average precision (mAP) = %f, or %2.2f %% \n", mean_average_precision, mean_average_precision*100); |
| | | |
| | |
| | | fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start)); |
| | | } |
| | | |
| | | void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh) |
| | | #ifdef OPENCV |
| | | void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height, int show) |
| | | { |
| | | printf("\n num_of_clusters = %d, final_width = %d, final_height = %d \n", num_of_clusters, final_width, final_height); |
| | | |
| | | //float pointsdata[] = { 1,1, 2,2, 6,6, 5,5, 10,10 }; |
| | | float *rel_width_height_array = calloc(1000, sizeof(float)); |
| | | |
| | | list *options = read_data_cfg(datacfg); |
| | | char *train_images = option_find_str(options, "train", "data/train.list"); |
| | | list *plist = get_paths(train_images); |
| | | int number_of_images = plist->size; |
| | | char **paths = (char **)list_to_array(plist); |
| | | |
| | | int number_of_boxes = 0; |
| | | printf(" read labels from %d images \n", number_of_images); |
| | | |
| | | int i, j; |
| | | for (i = 0; i < number_of_images; ++i) { |
| | | char *path = paths[i]; |
| | | char labelpath[4096]; |
| | | find_replace(path, "images", "labels", labelpath); |
| | | find_replace(labelpath, "JPEGImages", "labels", labelpath); |
| | | find_replace(labelpath, ".jpg", ".txt", labelpath); |
| | | find_replace(labelpath, ".JPEG", ".txt", labelpath); |
| | | find_replace(labelpath, ".png", ".txt", labelpath); |
| | | int num_labels = 0; |
| | | box_label *truth = read_boxes(labelpath, &num_labels); |
| | | //printf(" new path: %s \n", labelpath); |
| | | for (j = 0; j < num_labels; ++j) |
| | | { |
| | | number_of_boxes++; |
| | | rel_width_height_array = realloc(rel_width_height_array, 2 * number_of_boxes * sizeof(float)); |
| | | rel_width_height_array[number_of_boxes * 2 - 2] = truth[j].w * final_width; |
| | | rel_width_height_array[number_of_boxes * 2 - 1] = truth[j].h * final_height; |
| | | printf("\r loaded \t image: %d \t box: %d", i+1, number_of_boxes); |
| | | } |
| | | } |
| | | printf("\n all loaded. \n"); |
| | | |
| | | CvMat* points = cvCreateMat(number_of_boxes, 2, CV_32FC1); |
| | | CvMat* centers = cvCreateMat(num_of_clusters, 2, CV_32FC1); |
| | | CvMat* labels = cvCreateMat(number_of_boxes, 1, CV_32SC1); |
| | | |
| | | for (i = 0; i < number_of_boxes; ++i) { |
| | | points->data.fl[i * 2] = rel_width_height_array[i * 2]; |
| | | points->data.fl[i * 2 + 1] = rel_width_height_array[i * 2 + 1]; |
| | | //cvSet1D(points, i * 2, cvScalar(rel_width_height_array[i * 2], 0, 0, 0)); |
| | | //cvSet1D(points, i * 2 + 1, cvScalar(rel_width_height_array[i * 2 + 1], 0, 0, 0)); |
| | | } |
| | | |
| | | |
| | | const int attemps = 10; |
| | | double compactness; |
| | | |
| | | enum { |
| | | KMEANS_RANDOM_CENTERS = 0, |
| | | KMEANS_USE_INITIAL_LABELS = 1, |
| | | KMEANS_PP_CENTERS = 2 |
| | | }; |
| | | |
| | | printf("\n calculating k-means++ ..."); |
| | | // Should be used: distance(box, centroid) = 1 - IoU(box, centroid) |
| | | cvKMeans2(points, num_of_clusters, labels, |
| | | cvTermCriteria(CV_TERMCRIT_EPS+CV_TERMCRIT_ITER, 10000, 0), attemps, |
| | | 0, KMEANS_PP_CENTERS, |
| | | centers, &compactness); |
| | | |
| | | //orig 2.0 anchors = 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 |
| | | //float orig_anch[] = { 1.08,1.19, 3.42,4.41, 6.63,11.38, 9.42,5.11, 16.62,10.52 }; |
| | | // worse than ours (even for 19x19 final size - for input size 608x608) |
| | | |
| | | //orig anchors = 1.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053, 11.2364,10.0071 |
| | | //float orig_anch[] = { 1.3221,1.73145, 3.19275,4.00944, 5.05587,8.09892, 9.47112,4.84053, 11.2364,10.0071 }; |
| | | // orig (IoU=59.90%) better than ours (59.75%) |
| | | |
| | | //gen_anchors.py = 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 |
| | | //float orig_anch[] = { 1.19, 1.99, 2.79, 4.60, 4.53, 8.92, 8.06, 5.29, 10.32, 10.66 }; |
| | | |
| | | // ours: anchors = 9.3813,6.0095, 3.3999,5.3505, 10.9476,11.1992, 5.0161,9.8314, 1.5003,2.1595 |
| | | //float orig_anch[] = { 9.3813,6.0095, 3.3999,5.3505, 10.9476,11.1992, 5.0161,9.8314, 1.5003,2.1595 }; |
| | | //for (i = 0; i < num_of_clusters * 2; ++i) centers->data.fl[i] = orig_anch[i]; |
| | | |
| | | //for (i = 0; i < number_of_boxes; ++i) |
| | | // printf("%2.2f,%2.2f, ", points->data.fl[i * 2], points->data.fl[i * 2 + 1]); |
| | | |
| | | float avg_iou = 0; |
| | | for (i = 0; i < number_of_boxes; ++i) { |
| | | float box_w = points->data.fl[i * 2]; |
| | | float box_h = points->data.fl[i * 2 + 1]; |
| | | //int cluster_idx = labels->data.i[i]; |
| | | int cluster_idx = 0; |
| | | float min_dist = FLT_MAX; |
| | | for (j = 0; j < num_of_clusters; ++j) { |
| | | float anchor_w = centers->data.fl[j * 2]; |
| | | float anchor_h = centers->data.fl[j * 2 + 1]; |
| | | float w_diff = anchor_w - box_w; |
| | | float h_diff = anchor_h - box_h; |
| | | float distance = sqrt(w_diff*w_diff + h_diff*h_diff); |
| | | if (distance < min_dist) min_dist = distance, cluster_idx = j; |
| | | } |
| | | |
| | | float anchor_w = centers->data.fl[cluster_idx * 2]; |
| | | float anchor_h = centers->data.fl[cluster_idx * 2 + 1]; |
| | | float min_w = (box_w < anchor_w) ? box_w : anchor_w; |
| | | float min_h = (box_h < anchor_h) ? box_h : anchor_h; |
| | | float box_intersect = min_w*min_h; |
| | | float box_union = box_w*box_h + anchor_w*anchor_h - box_intersect; |
| | | float iou = box_intersect / box_union; |
| | | if (iou > 1 || iou < 0) { |
| | | printf(" i = %d, box_w = %d, box_h = %d, anchor_w = %d, anchor_h = %d, iou = %f \n", |
| | | i, box_w, box_h, anchor_w, anchor_h, iou); |
| | | } |
| | | else avg_iou += iou; |
| | | } |
| | | avg_iou = 100 * avg_iou / number_of_boxes; |
| | | printf("\n avg IoU = %2.2f %% \n", avg_iou); |
| | | |
| | | char buff[1024]; |
| | | FILE* fw = fopen("anchors.txt", "wb"); |
| | | printf("\nSaving anchors to the file: anchors.txt \n"); |
| | | printf("anchors = "); |
| | | for (i = 0; i < num_of_clusters; ++i) { |
| | | sprintf(buff, "%2.4f,%2.4f", centers->data.fl[i * 2], centers->data.fl[i * 2 + 1]); |
| | | printf("%s, ", buff); |
| | | fwrite(buff, sizeof(char), strlen(buff), fw); |
| | | if (i + 1 < num_of_clusters) fwrite(", ", sizeof(char), 2, fw);; |
| | | } |
| | | printf("\n"); |
| | | fclose(fw); |
| | | |
| | | if (show) { |
| | | size_t img_size = 700; |
| | | IplImage* img = cvCreateImage(cvSize(img_size, img_size), 8, 3); |
| | | cvZero(img); |
| | | for (j = 0; j < num_of_clusters; ++j) { |
| | | CvPoint pt1, pt2; |
| | | pt1.x = pt1.y = 0; |
| | | pt2.x = centers->data.fl[j * 2] * img_size / final_width; |
| | | pt2.y = centers->data.fl[j * 2 + 1] * img_size / final_height; |
| | | cvRectangle(img, pt1, pt2, CV_RGB(255, 255, 255), 1, 8, 0); |
| | | } |
| | | |
| | | for (i = 0; i < number_of_boxes; ++i) { |
| | | CvPoint pt; |
| | | pt.x = points->data.fl[i * 2] * img_size / final_width; |
| | | pt.y = points->data.fl[i * 2 + 1] * img_size / final_height; |
| | | int cluster_idx = labels->data.i[i]; |
| | | int red_id = (cluster_idx * (uint64_t)123 + 55) % 255; |
| | | int green_id = (cluster_idx * (uint64_t)321 + 33) % 255; |
| | | int blue_id = (cluster_idx * (uint64_t)11 + 99) % 255; |
| | | cvCircle(img, pt, 1, CV_RGB(red_id, green_id, blue_id), CV_FILLED, 8, 0); |
| | | //if(pt.x > img_size || pt.y > img_size) printf("\n pt.x = %d, pt.y = %d \n", pt.x, pt.y); |
| | | } |
| | | cvShowImage("clusters", img); |
| | | cvWaitKey(0); |
| | | cvReleaseImage(&img); |
| | | cvDestroyAllWindows(); |
| | | } |
| | | |
| | | free(rel_width_height_array); |
| | | cvReleaseMat(&points); |
| | | cvReleaseMat(¢ers); |
| | | cvReleaseMat(&labels); |
| | | } |
| | | #else |
| | | void calc_anchors(char *datacfg, int num_of_clusters, int final_width, int final_height, int show) { |
| | | printf(" k-means++ can't be used without OpenCV, because there is used cvKMeans2 implementation \n"); |
| | | } |
| | | #endif // OPENCV |
| | | |
| | | void test_detector(char *datacfg, char *cfgfile, char *weightfile, char *filename, float thresh, int dont_show) |
| | | { |
| | | list *options = read_data_cfg(datacfg); |
| | | char *name_list = option_find_str(options, "names", "data/names.list"); |
| | |
| | | if (nms) do_nms_sort(boxes, probs, l.w*l.h*l.n, l.classes, nms); |
| | | draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes); |
| | | save_image(im, "predictions"); |
| | | show_image(im, "predictions"); |
| | | if (!dont_show) { |
| | | show_image(im, "predictions"); |
| | | } |
| | | |
| | | free_image(im); |
| | | free_image(sized); |
| | | free(boxes); |
| | | free_ptrs((void **)probs, l.w*l.h*l.n); |
| | | #ifdef OPENCV |
| | | cvWaitKey(0); |
| | | cvDestroyAllWindows(); |
| | | if (!dont_show) { |
| | | cvWaitKey(0); |
| | | cvDestroyAllWindows(); |
| | | } |
| | | #endif |
| | | if (filename) break; |
| | | } |
| | |
| | | |
| | | void run_detector(int argc, char **argv) |
| | | { |
| | | int dont_show = find_arg(argc, argv, "-dont_show"); |
| | | int show = find_arg(argc, argv, "-show"); |
| | | int http_stream_port = find_int_arg(argc, argv, "-http_port", -1); |
| | | char *out_filename = find_char_arg(argc, argv, "-out_filename", 0); |
| | | char *prefix = find_char_arg(argc, argv, "-prefix", 0); |
| | | float thresh = find_float_arg(argc, argv, "-thresh", .24); |
| | | int cam_index = find_int_arg(argc, argv, "-c", 0); |
| | | int frame_skip = find_int_arg(argc, argv, "-s", 0); |
| | | int num_of_clusters = find_int_arg(argc, argv, "-num_of_clusters", 5); |
| | | int final_width = find_int_arg(argc, argv, "-final_width", 13); |
| | | int final_heigh = find_int_arg(argc, argv, "-final_heigh", 13); |
| | | if(argc < 4){ |
| | | fprintf(stderr, "usage: %s %s [train/test/valid] [cfg] [weights (optional)]\n", argv[0], argv[1]); |
| | | return; |
| | |
| | | if(weights) |
| | | if (weights[strlen(weights) - 1] == 0x0d) weights[strlen(weights) - 1] = 0; |
| | | char *filename = (argc > 6) ? argv[6]: 0; |
| | | if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh); |
| | | else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear); |
| | | if(0==strcmp(argv[2], "test")) test_detector(datacfg, cfg, weights, filename, thresh, dont_show); |
| | | else if(0==strcmp(argv[2], "train")) train_detector(datacfg, cfg, weights, gpus, ngpus, clear, dont_show); |
| | | else if(0==strcmp(argv[2], "valid")) validate_detector(datacfg, cfg, weights); |
| | | else if(0==strcmp(argv[2], "recall")) validate_detector_recall(datacfg, cfg, weights); |
| | | else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights); |
| | | else if(0==strcmp(argv[2], "map")) validate_detector_map(datacfg, cfg, weights, thresh); |
| | | else if(0==strcmp(argv[2], "calc_anchors")) calc_anchors(datacfg, num_of_clusters, final_width, final_heigh, show); |
| | | else if(0==strcmp(argv[2], "demo")) { |
| | | list *options = read_data_cfg(datacfg); |
| | | int classes = option_find_int(options, "classes", 20); |
| | |
| | | char **names = get_labels(name_list); |
| | | if(filename) |
| | | if (filename[strlen(filename) - 1] == 0x0d) filename[strlen(filename) - 1] = 0; |
| | | demo(cfg, weights, thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename); |
| | | demo(cfg, weights, thresh, cam_index, filename, names, classes, frame_skip, prefix, out_filename, |
| | | http_stream_port, dont_show); |
| | | } |
| | | } |