| | |
| | | layer l = {0}; |
| | | l.type = SHORTCUT; |
| | | l.batch = batch; |
| | | l.w = w; |
| | | l.h = h; |
| | | l.c = c; |
| | | l.w = w2; |
| | | l.h = h2; |
| | | l.c = c2; |
| | | l.out_w = w; |
| | | l.out_h = h; |
| | | l.out_c = c; |
| | | l.outputs = w*h*c; |
| | | l.inputs = w*h*c; |
| | | int stride = w2 / w; |
| | | l.inputs = l.outputs; |
| | | |
| | | assert(stride * w == w2); |
| | | assert(stride * h == h2); |
| | | assert(c >= c2); |
| | | |
| | | l.stride = stride; |
| | | l.n = c2; |
| | | l.index = index; |
| | | |
| | | l.delta = calloc(l.outputs*batch, sizeof(float)); |
| | | l.output = calloc(l.outputs*batch, sizeof(float));; |
| | | |
| | | l.forward = forward_shortcut_layer; |
| | | l.backward = backward_shortcut_layer; |
| | | #ifdef GPU |
| | | l.forward_gpu = forward_shortcut_layer_gpu; |
| | | l.backward_gpu = backward_shortcut_layer_gpu; |
| | | |
| | | l.delta_gpu = cuda_make_array(l.delta, l.outputs*batch); |
| | | l.output_gpu = cuda_make_array(l.output, l.outputs*batch); |
| | | #endif |
| | | return l; |
| | | } |
| | | |
| | | void resize_shortcut_layer(layer *l, int w, int h) |
| | | { |
| | | assert(l->w == l->out_w); |
| | | assert(l->h == l->out_h); |
| | | l->w = l->out_w = w; |
| | | l->h = l->out_h = h; |
| | | l->outputs = w*h*l->out_c; |
| | | l->inputs = l->outputs; |
| | | l->delta = realloc(l->delta, l->outputs*l->batch * sizeof(float)); |
| | | l->output = realloc(l->output, l->outputs*l->batch * sizeof(float)); |
| | | |
| | | #ifdef GPU |
| | | cuda_free(l->output_gpu); |
| | | cuda_free(l->delta_gpu); |
| | | l->output_gpu = cuda_make_array(l->output, l->outputs*l->batch); |
| | | l->delta_gpu = cuda_make_array(l->delta, l->outputs*l->batch); |
| | | #endif |
| | | |
| | | } |
| | | |
| | | void forward_shortcut_layer(const layer l, network_state state) |
| | | { |
| | | copy_cpu(l.outputs*l.batch, state.input, 1, l.output, 1); |
| | | shortcut_cpu(l.output, l.w, l.h, l.c, l.batch, 1, state.net.layers[l.index].output, l.stride, l.n); |
| | | shortcut_cpu(l.batch, l.w, l.h, l.c, state.net.layers[l.index].output, l.out_w, l.out_h, l.out_c, l.output); |
| | | activate_array(l.output, l.outputs*l.batch, l.activation); |
| | | } |
| | | |
| | | void backward_shortcut_layer(const layer l, network_state state) |
| | | { |
| | | copy_cpu(l.outputs*l.batch, l.delta, 1, state.delta, 1); |
| | | shortcut_cpu(state.net.layers[l.index].delta, l.w*l.stride, l.h*l.stride, l.n, l.batch, l.stride, l.delta, 1, l.c); |
| | | gradient_array(l.output, l.outputs*l.batch, l.activation, l.delta); |
| | | axpy_cpu(l.outputs*l.batch, 1, l.delta, 1, state.delta, 1); |
| | | shortcut_cpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta, l.w, l.h, l.c, state.net.layers[l.index].delta); |
| | | } |
| | | |
| | | #ifdef GPU |
| | | void forward_shortcut_layer_gpu(const layer l, network_state state) |
| | | { |
| | | copy_ongpu(l.outputs*l.batch, state.input, 1, l.output_gpu, 1); |
| | | shortcut_gpu(l.output_gpu, l.w, l.h, l.c, l.batch, 1, state.net.layers[l.index].output_gpu, l.stride, l.n); |
| | | shortcut_gpu(l.batch, l.w, l.h, l.c, state.net.layers[l.index].output_gpu, l.out_w, l.out_h, l.out_c, l.output_gpu); |
| | | activate_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation); |
| | | } |
| | | |
| | | void backward_shortcut_layer_gpu(const layer l, network_state state) |
| | | { |
| | | copy_ongpu(l.outputs*l.batch, l.delta_gpu, 1, state.delta, 1); |
| | | shortcut_gpu(state.net.layers[l.index].delta_gpu, l.w*l.stride, l.h*l.stride, l.n, l.batch, l.stride, l.delta_gpu, 1, l.c); |
| | | gradient_array_ongpu(l.output_gpu, l.outputs*l.batch, l.activation, l.delta_gpu); |
| | | axpy_ongpu(l.outputs*l.batch, 1, l.delta_gpu, 1, state.delta, 1); |
| | | shortcut_gpu(l.batch, l.out_w, l.out_h, l.out_c, l.delta_gpu, l.w, l.h, l.c, state.net.layers[l.index].delta_gpu); |
| | | } |
| | | #endif |