Joseph Redmon
2015-05-04 372980d690f84aade1ebfd1a92750ed327ab1c8d
src/detection.c
@@ -57,6 +57,7 @@
void train_detection(char *cfgfile, char *weightfile)
{
    srand(time(0));
    data_seed = time(0);
    int imgnet = 0;
    char *base = basecfg(cfgfile);
    printf("%s\n", base);
@@ -80,7 +81,10 @@
    if (imgnet){
        plist = get_paths("/home/pjreddie/data/imagenet/det.train.list");
    }else{
        plist = get_paths("/home/pjreddie/data/voc/trainall.txt");
        plist = get_paths("/home/pjreddie/data/voc/no_2012_val.txt");
        //plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt");
        //plist = get_paths("/home/pjreddie/data/coco/trainval.txt");
        //plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt");
    }
    paths = (char **)list_to_array(plist);
    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
@@ -92,10 +96,12 @@
        train = buffer;
        load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
/*
           image im = float_to_image(im_dim, im_dim, 3, train.X.vals[114]);
           draw_detection(im, train.y.vals[114], 7);
*/
        /*
           image im = float_to_image(net.w, net.h, 3, train.X.vals[114]);
           image copy = copy_image(im);
           draw_detection(copy, train.y.vals[114], 7);
           free_image(copy);
         */
        printf("Loaded: %lf seconds\n", sec(clock()-time));
        time=clock();
@@ -113,6 +119,34 @@
    }
}
void predict_detections(network net, data d, float threshold, int offset, int classes, int nuisance, int background, int num_boxes, int per_box)
{
    matrix pred = network_predict_data(net, d);
    int j, k, class;
    for(j = 0; j < pred.rows; ++j){
        for(k = 0; k < pred.cols; k += per_box){
            float scale = 1.;
            int index = k/per_box;
            int row = index / num_boxes;
            int col = index % num_boxes;
            if (nuisance) scale = 1.-pred.vals[j][k];
            for (class = 0; class < classes; ++class){
                int ci = k+classes+background+nuisance;
                float x = (pred.vals[j][ci + 0] + col)/num_boxes;
                float y = (pred.vals[j][ci + 1] + row)/num_boxes;
                float w = pred.vals[j][ci + 2]; //* distance_from_edge(row, num_boxes);
                float h = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes);
                w = w*w;
                h = h*h;
                float prob = scale*pred.vals[j][k+class+background+nuisance];
                if(prob < threshold) continue;
                printf("%d %d %f %f %f %f %f\n", offset +  j, class, prob, y, x, h, w);
            }
        }
    }
    free_matrix(pred);
}
void validate_detection(char *cfgfile, char *weightfile)
{
    network net = parse_network_cfg(cfgfile);
@@ -123,7 +157,9 @@
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));
    list *plist = get_paths("/home/pjreddie/data/voc/val.txt");
    //list *plist = get_paths("/home/pjreddie/data/voc/test_2007.txt");
    list *plist = get_paths("/home/pjreddie/data/voc/val_2012.txt");
    //list *plist = get_paths("/home/pjreddie/data/voc/test.txt");
    //list *plist = get_paths("/home/pjreddie/data/voc/val.expanded.txt");
    //list *plist = get_paths("/home/pjreddie/data/voc/train.txt");
    char **paths = (char **)list_to_array(plist);
@@ -139,47 +175,37 @@
    int m = plist->size;
    int i = 0;
    int splits = 100;
    int num = (i+1)*m/splits - i*m/splits;
    fprintf(stderr, "%d\n", m);
    data val, buffer;
    pthread_t load_thread = load_data_thread(paths, num, 0, 0, num_output, net.w, net.h, &buffer);
    int nthreads = 4;
    int t;
    data *val = calloc(nthreads, sizeof(data));
    data *buf = calloc(nthreads, sizeof(data));
    pthread_t *thr = calloc(nthreads, sizeof(data));
    for(t = 0; t < nthreads; ++t){
        int num = (i+1+t)*m/splits - (i+t)*m/splits;
        char **part = paths+((i+t)*m/splits);
        thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t]));
    }
    clock_t time;
    for(i = 1; i <= splits; ++i){
    for(i = nthreads; i <= splits; i += nthreads){
        time=clock();
        pthread_join(load_thread, 0);
        val = buffer;
        num = (i+1)*m/splits - i*m/splits;
        char **part = paths+(i*m/splits);
        if(i != splits) load_thread = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &buffer);
        for(t = 0; t < nthreads; ++t){
            pthread_join(thr[t], 0);
            val[t] = buf[t];
        }
        for(t = 0; t < nthreads && i < splits; ++t){
            int num = (i+1+t)*m/splits - (i+t)*m/splits;
            char **part = paths+((i+t)*m/splits);
            thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t]));
        }
        fprintf(stderr, "%d: Loaded: %lf seconds\n", i, sec(clock()-time));
        matrix pred = network_predict_data(net, val);
        int j, k, class;
        for(j = 0; j < pred.rows; ++j){
            for(k = 0; k < pred.cols; k += per_box){
                float scale = 1.;
                int index = k/per_box;
                int row = index / num_boxes;
                int col = index % num_boxes;
                if (nuisance) scale = 1.-pred.vals[j][k];
                for (class = 0; class < classes; ++class){
                    int ci = k+classes+background+nuisance;
                    float y = (pred.vals[j][ci + 0] + row)/num_boxes;
                    float x = (pred.vals[j][ci + 1] + col)/num_boxes;
                    float h = pred.vals[j][ci + 2]; //* distance_from_edge(row, num_boxes);
                    h = h*h;
                    float w = pred.vals[j][ci + 3]; //* distance_from_edge(col, num_boxes);
                    w = w*w;
                    float prob = scale*pred.vals[j][k+class+background+nuisance];
                    if(prob < .001) continue;
                    printf("%d %d %f %f %f %f %f\n", (i-1)*m/splits + j, class, prob, y, x, h, w);
                }
            }
        for(t = 0; t < nthreads; ++t){
            predict_detections(net, val[t], .01, (i-nthreads+t)*m/splits, classes, nuisance, background, num_boxes, per_box);
            free_data(val[t]);
        }
        time=clock();
        free_data(val);
    }
}
@@ -198,8 +224,6 @@
        fgets(filename, 256, stdin);
        strtok(filename, "\n");
        image im = load_image_color(filename, im_size, im_size);
        translate_image(im, -128);
        scale_image(im, 1/128.);
        printf("%d %d %d\n", im.h, im.w, im.c);
        float *X = im.data;
        time=clock();