| | |
| | | #include "blas.h" |
| | | #include <stdio.h> |
| | | |
| | | route_layer *make_route_layer(int batch, int n, int *input_layers, int *input_sizes) |
| | | route_layer make_route_layer(int batch, int n, int *input_layers, int *input_sizes) |
| | | { |
| | | printf("Route Layer:"); |
| | | route_layer *layer = calloc(1, sizeof(route_layer)); |
| | | layer->batch = batch; |
| | | layer->n = n; |
| | | layer->input_layers = input_layers; |
| | | layer->input_sizes = input_sizes; |
| | | fprintf(stderr,"Route Layer:"); |
| | | route_layer l = {0}; |
| | | l.type = ROUTE; |
| | | l.batch = batch; |
| | | l.n = n; |
| | | l.input_layers = input_layers; |
| | | l.input_sizes = input_sizes; |
| | | int i; |
| | | int outputs = 0; |
| | | for(i = 0; i < n; ++i){ |
| | | printf(" %d", input_layers[i]); |
| | | fprintf(stderr," %d", input_layers[i]); |
| | | outputs += input_sizes[i]; |
| | | } |
| | | printf("\n"); |
| | | layer->outputs = outputs; |
| | | layer->delta = calloc(outputs*batch, sizeof(float)); |
| | | layer->output = calloc(outputs*batch, sizeof(float));; |
| | | fprintf(stderr, "\n"); |
| | | l.outputs = outputs; |
| | | l.inputs = outputs; |
| | | l.delta = calloc(outputs*batch, sizeof(float)); |
| | | l.output = calloc(outputs*batch, sizeof(float));; |
| | | #ifdef GPU |
| | | layer->delta_gpu = cuda_make_array(0, outputs*batch); |
| | | layer->output_gpu = cuda_make_array(0, outputs*batch); |
| | | l.delta_gpu = cuda_make_array(0, outputs*batch); |
| | | l.output_gpu = cuda_make_array(0, outputs*batch); |
| | | #endif |
| | | return layer; |
| | | return l; |
| | | } |
| | | |
| | | void forward_route_layer(const route_layer layer, network net) |
| | | void forward_route_layer(const route_layer l, network net) |
| | | { |
| | | int i, j; |
| | | int offset = 0; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | float *input = get_network_output_layer(net, layer.input_layers[i]); |
| | | int input_size = layer.input_sizes[i]; |
| | | for(j = 0; j < layer.batch; ++j){ |
| | | copy_cpu(input_size, input + j*input_size, 1, layer.output + offset + j*layer.outputs, 1); |
| | | for(i = 0; i < l.n; ++i){ |
| | | int index = l.input_layers[i]; |
| | | float *input = net.layers[index].output; |
| | | int input_size = l.input_sizes[i]; |
| | | for(j = 0; j < l.batch; ++j){ |
| | | copy_cpu(input_size, input + j*input_size, 1, l.output + offset + j*l.outputs, 1); |
| | | } |
| | | offset += input_size; |
| | | } |
| | | } |
| | | |
| | | void backward_route_layer(const route_layer layer, network net) |
| | | void backward_route_layer(const route_layer l, network net) |
| | | { |
| | | int i, j; |
| | | int offset = 0; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | float *delta = get_network_delta_layer(net, layer.input_layers[i]); |
| | | int input_size = layer.input_sizes[i]; |
| | | for(j = 0; j < layer.batch; ++j){ |
| | | copy_cpu(input_size, layer.delta + offset + j*layer.outputs, 1, delta + j*input_size, 1); |
| | | for(i = 0; i < l.n; ++i){ |
| | | int index = l.input_layers[i]; |
| | | float *delta = net.layers[index].delta; |
| | | int input_size = l.input_sizes[i]; |
| | | for(j = 0; j < l.batch; ++j){ |
| | | axpy_cpu(input_size, 1, l.delta + offset + j*l.outputs, 1, delta + j*input_size, 1); |
| | | } |
| | | offset += input_size; |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | void forward_route_layer_gpu(const route_layer layer, network net) |
| | | void forward_route_layer_gpu(const route_layer l, network net) |
| | | { |
| | | int i, j; |
| | | int offset = 0; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | float *input = get_network_output_gpu_layer(net, layer.input_layers[i]); |
| | | int input_size = layer.input_sizes[i]; |
| | | for(j = 0; j < layer.batch; ++j){ |
| | | copy_ongpu(input_size, input + j*input_size, 1, layer.output_gpu + offset + j*layer.outputs, 1); |
| | | for(i = 0; i < l.n; ++i){ |
| | | int index = l.input_layers[i]; |
| | | float *input = net.layers[index].output_gpu; |
| | | int input_size = l.input_sizes[i]; |
| | | for(j = 0; j < l.batch; ++j){ |
| | | copy_ongpu(input_size, input + j*input_size, 1, l.output_gpu + offset + j*l.outputs, 1); |
| | | } |
| | | offset += input_size; |
| | | } |
| | | } |
| | | |
| | | void backward_route_layer_gpu(const route_layer layer, network net) |
| | | void backward_route_layer_gpu(const route_layer l, network net) |
| | | { |
| | | int i, j; |
| | | int offset = 0; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | float *delta = get_network_delta_gpu_layer(net, layer.input_layers[i]); |
| | | int input_size = layer.input_sizes[i]; |
| | | for(j = 0; j < layer.batch; ++j){ |
| | | copy_ongpu(input_size, layer.delta_gpu + offset + j*layer.outputs, 1, delta + j*input_size, 1); |
| | | for(i = 0; i < l.n; ++i){ |
| | | int index = l.input_layers[i]; |
| | | float *delta = net.layers[index].delta_gpu; |
| | | int input_size = l.input_sizes[i]; |
| | | for(j = 0; j < l.batch; ++j){ |
| | | axpy_ongpu(input_size, 1, l.delta_gpu + offset + j*l.outputs, 1, delta + j*input_size, 1); |
| | | } |
| | | offset += input_size; |
| | | } |