| | |
| | | #include "gemm.h" |
| | | #include "utils.h" |
| | | #include "im2col.h" |
| | | #include "cuda.h" |
| | | #include <stdlib.h> |
| | | #include <stdio.h> |
| | | #include <math.h> |
| | | |
| | | #if defined(_OPENMP) |
| | | #include <omp.h> |
| | | #endif |
| | | |
| | | void gemm_bin(int M, int N, int K, float ALPHA, |
| | | char *A, int lda, |
| | | float *B, int ldb, |
| | |
| | | |
| | | // http://graphics.stanford.edu/~seander/bithacks.html |
| | | // https://stackoverflow.com/questions/17354971/fast-counting-the-number-of-set-bits-in-m128i-register |
| | | |
| | | // 2 x faster than popcnt: https://arxiv.org/pdf/1611.07612.pdf |
| | | // https://arxiv.org/pdf/1611.07612.pdf |
| | | |
| | | static inline int popcnt128(__m128i n) { |
| | | const __m128i n_hi = _mm_unpackhi_epi64(n, n); |
| | |
| | | return popcnt128(_mm256_extractf128_si256(n, 0)) + popcnt128(_mm256_extractf128_si256(n, 1)); |
| | | } |
| | | |
| | | static inline __m256i count256(__m256i v) { |
| | | __m256i lookup = |
| | | _mm256_setr_epi8(0, 1, 1, 2, 1, 2, 2, 3, 1, 2, |
| | | 2, 3, 2, 3, 3, 4, 0, 1, 1, 2, 1, 2, 2, 3, |
| | | 1, 2, 2, 3, 2, 3, 3, 4); |
| | | |
| | | __m256i low_mask = _mm256_set1_epi8(0x0f); |
| | | |
| | | __m256i lo = _mm256_and_si256(v, low_mask); |
| | | __m256i hi = _mm256_and_si256(_mm256_srli_epi32(v, 4), low_mask); |
| | | __m256i popcnt1 = _mm256_shuffle_epi8(lookup, lo); |
| | | __m256i popcnt2 = _mm256_shuffle_epi8(lookup, hi); |
| | | __m256i total = _mm256_add_epi8(popcnt1, popcnt2); |
| | | |
| | | return _mm256_sad_epu8(total, _mm256_setzero_si256()); |
| | | } |
| | | |
| | | static inline int popcnt256_custom(__m256i n) { |
| | | __m256i val = count256(n); |
| | | |
| | | return val.m256i_i64[0] + |
| | | val.m256i_i64[1] + |
| | | val.m256i_i64[2] + |
| | | val.m256i_i64[3]; |
| | | } |
| | | |
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | | float *C, int ldc, float *mean_arr) |
| | | { |
| | | __m256i all_1 = _mm256_set1_epi8(255); |
| | | int i, j, k, h; |
| | | int i; |
| | | |
| | | #if defined(_OPENMP) |
| | | static int max_num_threads = 0; |
| | | if (max_num_threads == 0) { |
| | | max_num_threads = omp_get_max_threads(); |
| | | omp_set_num_threads(max_num_threads / 2); |
| | | } |
| | | #endif |
| | | |
| | | #pragma omp parallel for |
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] |
| | | for (i = 0; i < M; ++i) |
| | | { // l.n - filters [16 - 55 - 1024] |
| | | float mean_val = mean_arr[i]; |
| | | int j, k; |
| | | __m256i all_1 = _mm256_set1_epi8(255); |
| | | |
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] |
| | | int count = 0; |
| | | const int bit_step = 256; |
| | | __m256i count_sum = _mm256_set1_epi8(0); |
| | | |
| | | for (k = 0; k < K; k += bit_step) { // l.size*l.size*l.c - one filter size [27 - 9216] |
| | | |
| | | //__m128i a_bit128 = _mm_loadu_si128((__m128i *)(A + (i*lda + k) / 8)); |
| | | //__m128i b_bit128 = _mm_loadu_si128((__m128i *)(B + (j*ldb + k) / 8)); |
| | | //__m128i xor128 = _mm_xor_si128(a_bit128, b_bit128); |
| | | //__m128i c_bit128 = _mm_andnot_si128(xor128, all_1); |
| | | //int tmp_count = popcnt128(c_bit128); |
| | | |
| | | __m256i a_bit256 = _mm256_loadu_si256((__m256i *)(A + (i*lda + k) / 8)); |
| | | __m256i b_bit256 = _mm256_loadu_si256((__m256i *)(B + (j*ldb + k) / 8)); |
| | | __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256); |
| | | __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1); //we can do NOT for wegihts once and do not do this NOT |
| | | int tmp_count = popcnt256(c_bit256); |
| | | __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256); // xnor = not(xor(a,b)) |
| | | __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1); // can be optimized - we can do other NOT for wegihts once and do not do this NOT |
| | | |
| | | if (K - k < bit_step) tmp_count = tmp_count - (bit_step - (K - k)); // remove extra bits |
| | | count += tmp_count; |
| | | count_sum = _mm256_add_epi64(count256(c_bit256), count_sum); // Mulas algorithm |
| | | |
| | | //count += popcnt256(c_bit256); |
| | | |
| | | //binary_int64_printf(c_bit64); |
| | | //printf(", count = %d \n\n", tmp_count); |
| | | } |
| | | |
| | | // count of 1 bits |
| | | count = count_sum.m256i_i64[0] + |
| | | count_sum.m256i_i64[1] + |
| | | count_sum.m256i_i64[2] + |
| | | count_sum.m256i_i64[3]; |
| | | |
| | | int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step)); |
| | | count = count - f1; // remove extra bits (from empty space for align only) |
| | | |
| | | C[i*ldc + j] = (2 * count - K) * mean_val; |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | static inline float im2col_get_pixel(float *im, int height, int width, int channels, |
| | | int row, int col, int channel, int pad) |
| | | { |
| | | row -= pad; |
| | | col -= pad; |
| | | |
| | | if (row < 0 || col < 0 || |
| | | row >= height || col >= width) return 0; |
| | | return im[col + width*(row + height*channel)]; |
| | | } |
| | | |
| | | //From Berkeley Vision's Caffe! |
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE |
| | | void im2col_cpu_custom(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col) |
| | | { |
| | | |
| | | int c, h, w; |
| | | int height_col = (height + 2 * pad - ksize) / stride + 1; |
| | | int width_col = (width + 2 * pad - ksize) / stride + 1; |
| | | int channels_col = channels * ksize * ksize; |
| | | |
| | | // optimized version |
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1) |
| | | { |
| | | #pragma omp parallel for |
| | | for (c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for (h = pad; h < height_col-pad; ++h) { |
| | | for (w = pad; w < width_col-pad-8; w += 8) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | |
| | | //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | __m256 src256 = _mm256_loadu_ps((__m256i *)(&data_im[im_col + width*(im_row + height*c_im)])); |
| | | _mm256_storeu_ps(&data_col[col_index], src256); |
| | | } |
| | | |
| | | for (; w < width_col - pad; ++w) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | |
| | | data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = 0; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = width_col-1; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = 0; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = height_col-1; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | } |
| | | |
| | | } |
| | | else { |
| | | //printf("\n Error: is no non-optimized version \n"); |
| | | im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col); |
| | | } |
| | | } |
| | | |
| | | void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a) |
| | | { |
| | | int i; |
| | | if (a == LINEAR) |
| | | {} |
| | | else if (a == LEAKY) |
| | | { |
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| | | __m256 all256_01 = _mm256_set1_ps(0.1F); |
| | | |
| | | for (i = 0; i < n; i += 8) { |
| | | //x[i] = (x[i]>0) ? x[i] : .1*x[i]; |
| | | |
| | | __m256 src256 = _mm256_loadu_ps((__m256 *)(&x[i])); |
| | | __m256 mult256 = _mm256_mul_ps((src256), all256_01); // mult * 0.1 |
| | | |
| | | __m256i sign256 = _mm256_and_si256(_mm256_castps_si256(src256), all256_sing1); // check sign in 8 x 32-bit floats |
| | | |
| | | __m256 result256 = _mm256_blendv_ps(src256, mult256, _mm256_castsi256_ps(sign256)); // (sign>0) ? src : mult; |
| | | _mm256_storeu_ps((__m256 *)(&x[i]), result256); |
| | | } |
| | | |
| | | for (; i < n; ++i) { |
| | | x[i] = (x[i]>0) ? x[i] : .1*x[i]; |
| | | } |
| | | } |
| | | else { |
| | | for (i = 0; i < n; ++i) { |
| | | x[i] = activate(x[i], a); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void float_to_bit(float *src, unsigned char *dst, size_t size) |
| | | { |
| | | size_t dst_size = size / 8 + 1; |
| | | memset(dst, 0, dst_size); |
| | | |
| | | size_t i; |
| | | __m128i all128_0 = _mm_set_epi32(0, 0, 0, 0); |
| | | __m256 all256_0 = _mm256_set1_ps(0); |
| | | __m256i bits_asc = _mm256_set_epi32(1, 2, 4, 8, 16, 32, 64, 128); |
| | | //for(i = 0; i < 8; ++i) bits_asc.m256i_i32[i] = 1 << i; |
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| | | |
| | | for (i = 0; i < size; i+=8) |
| | | { |
| | | __m256 src256 = _mm256_loadu_ps((__m256i *)(&src[i])); // load 256 bits |
| | | __m256 result256 = _mm256_cmp_ps(src256, all256_0, _CMP_GT_OS); // compare dst[i] = (float[i] > 0) |
| | | __m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i])); |
| | | __m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats |
| | | |
| | | __m256i bits256 = _mm256_castps_si256(result256); // floats to ints32 |
| | | __m256i and256 = _mm256_and_si256(bits256, bits_asc); // bitwise and |
| | | uint32_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1 |
| | | mask = ~mask; // inverse mask, (val >= 0) ? 1 : 0 |
| | | |
| | | // sum all elements from single and256 |
| | | __m128i tmp128 = _mm_hadd_epi32(_mm256_extractf128_si256(and256, 0), _mm256_extractf128_si256(and256, 1)); |
| | | tmp128 = _mm_hadd_epi32(tmp128, all128_0); |
| | | tmp128 = _mm_hadd_epi32(tmp128, all128_0); |
| | | |
| | | dst[i / 8] = tmp128.m128i_i32[0]; |
| | | dst[i / 8] = mask; |
| | | } |
| | | // int _mm256_movemask_epi8 (__m256i a) |
| | | } |
| | | |
| | | static inline void transpose4x4_SSE(float *A, float *B, const int lda, const int ldb) |
| | | { |
| | | __m128 row1 = _mm_load_ps(&A[0 * lda]); |
| | | __m128 row2 = _mm_load_ps(&A[1 * lda]); |
| | | __m128 row3 = _mm_load_ps(&A[2 * lda]); |
| | | __m128 row4 = _mm_load_ps(&A[3 * lda]); |
| | | _MM_TRANSPOSE4_PS(row1, row2, row3, row4); |
| | | _mm_store_ps(&B[0 * ldb], row1); |
| | | _mm_store_ps(&B[1 * ldb], row2); |
| | | _mm_store_ps(&B[2 * ldb], row3); |
| | | _mm_store_ps(&B[3 * ldb], row4); |
| | | } |
| | | |
| | | void transpose_block_SSE4x4(float *A, float *B, const int n, const int m, |
| | | const int lda, const int ldb, const int block_size) |
| | | { |
| | | int i; |
| | | if (block_size % 4 == 0) { |
| | | #pragma omp parallel for |
| | | for (i = 0; i < n; i += block_size) { |
| | | int j, i2, j2; |
| | | for (j = 0; j < m; j += block_size) { |
| | | int max_i2 = i + block_size < n ? i + block_size : n; |
| | | int max_j2 = j + block_size < m ? j + block_size : m; |
| | | for (i2 = i; i2 < max_i2; i2 += 4) { |
| | | for (j2 = j; j2 < max_j2; j2 += 4) { |
| | | transpose4x4_SSE(&A[i2*lda + j2], &B[j2*ldb + i2], lda, ldb); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | else { |
| | | #pragma omp parallel for |
| | | for (i = 0; i < n; i += block_size) { |
| | | int j, i2, j2; |
| | | for (j = 0; j < m; j += block_size) { |
| | | int max_i2 = i + block_size < n ? i + block_size : n; |
| | | int max_j2 = j + block_size < m ? j + block_size : m; |
| | | for (i2 = i; i2 < max_i2; ++i2) { |
| | | for (j2 = j; j2 < max_j2; ++j2) { |
| | | B[j2*ldb + i2] = A[i2*lda + j2]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | #else |
| | | |
| | | void gemm_nn(int M, int N, int K, float ALPHA, |
| | |
| | | } |
| | | } |
| | | |
| | | //From Berkeley Vision's Caffe! |
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE |
| | | void im2col_cpu_custom(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col) |
| | | { |
| | | |
| | | int c, h, w; |
| | | int height_col = (height + 2 * pad - ksize) / stride + 1; |
| | | int width_col = (width + 2 * pad - ksize) / stride + 1; |
| | | int channels_col = channels * ksize * ksize; |
| | | |
| | | // optimized version |
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1) |
| | | { |
| | | #pragma omp parallel for |
| | | for (c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for (h = pad; h < height_col - pad; ++h) { |
| | | for (w = pad; w < width_col - pad; ++w) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | |
| | | data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | } |
| | | |
| | | for (; w < width_col - pad; ++w) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | |
| | | data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = 0; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = width_col - 1; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = 0; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = height_col - 1; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | } |
| | | |
| | | } |
| | | else { |
| | | //printf("\n Error: is no non-optimized version \n"); |
| | | im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col); |
| | | } |
| | | } |
| | | |
| | | void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a) |
| | | { |
| | | int i; |
| | | if (a == LINEAR) |
| | | { |
| | | } |
| | | else if (a == LEAKY) |
| | | { |
| | | for (i = 0; i < n; ++i) { |
| | | x[i] = (x[i]>0) ? x[i] : .1*x[i]; |
| | | } |
| | | } |
| | | else { |
| | | for (i = 0; i < n; ++i) { |
| | | x[i] = activate(x[i], a); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void float_to_bit(float *src, unsigned char *dst, size_t size) |
| | | { |
| | | size_t dst_size = size / 8 + 1; |
| | |
| | | } |
| | | free(byte_arr); |
| | | } |
| | | |
| | | static inline void transpose_scalar_block(float *A, float *B, const int lda, const int ldb, const int block_size) |
| | | { |
| | | int i, j; |
| | | //#pragma omp parallel for |
| | | for (i = 0; i<block_size; i++) { |
| | | for (j = 0; j<block_size; j++) { |
| | | B[j*ldb + i] = A[i*lda + j]; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void transpose_block_SSE4x4(float *A, float *B, const int n, const int m, |
| | | const int lda, const int ldb, const int block_size) |
| | | { |
| | | int i; |
| | | #pragma omp parallel for |
| | | for (i = 0; i < n; i += block_size) { |
| | | int j, i2, j2; |
| | | for (j = 0; j < m; j += block_size) { |
| | | int max_i2 = i + block_size < n ? i + block_size : n; |
| | | int max_j2 = j + block_size < m ? j + block_size : m; |
| | | for (i2 = i; i2 < max_i2; ++i2) { |
| | | for (j2 = j; j2 < max_j2; ++j2) { |
| | | B[j2*ldb + i2] = A[i2*lda + j2]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | #endif // __x86_64 |
| | | |
| | | void gemm_nt(int M, int N, int K, float ALPHA, |