| | |
| | | #include "mini_blas.h" |
| | | #include "gemm.h" |
| | | #include "utils.h" |
| | | #include "im2col.h" |
| | | #include "cuda.h" |
| | | #include <stdlib.h> |
| | | #include <stdio.h> |
| | | #include <math.h> |
| | | |
| | | void gemm(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | #if defined(_OPENMP) |
| | | #include <omp.h> |
| | | #endif |
| | | |
| | | void gemm_bin(int M, int N, int K, float ALPHA, |
| | | char *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | | int i,j,k; |
| | | for(i = 0; i < M; ++i){ |
| | | for(k = 0; k < K; ++k){ |
| | | char A_PART = A[i*lda+k]; |
| | | if(A_PART){ |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc+j] += B[k*ldb+j]; |
| | | } |
| | | } else { |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc+j] -= B[k*ldb+j]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | float *random_matrix(int rows, int cols) |
| | | { |
| | | int i; |
| | | float *m = calloc(rows*cols, sizeof(float)); |
| | | for(i = 0; i < rows*cols; ++i){ |
| | | m[i] = (float)rand()/RAND_MAX; |
| | | } |
| | | return m; |
| | | } |
| | | |
| | | void time_random_matrix(int TA, int TB, int m, int k, int n) |
| | | { |
| | | float *a; |
| | | if(!TA) a = random_matrix(m,k); |
| | | else a = random_matrix(k,m); |
| | | int lda = (!TA)?k:m; |
| | | float *b; |
| | | if(!TB) b = random_matrix(k,n); |
| | | else b = random_matrix(n,k); |
| | | int ldb = (!TB)?n:k; |
| | | |
| | | float *c = random_matrix(m,n); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i<10; ++i){ |
| | | gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); |
| | | } |
| | | end = clock(); |
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf ms\n",m,k,k,n, TA, TB, (float)(end-start)/CLOCKS_PER_SEC); |
| | | free(a); |
| | | free(b); |
| | | free(c); |
| | | } |
| | | |
| | | |
| | | void gemm(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float BETA, |
| | | float *C, int ldc) |
| | |
| | | gemm_cpu( TA, TB, M, N, K, ALPHA,A,lda, B, ldb,BETA,C,ldc); |
| | | } |
| | | |
| | | void gemm_nn(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | |
| | | //-------------------------------------------- |
| | | // XNOR bitwise GEMM for binary neural network |
| | | //-------------------------------------------- |
| | | |
| | | #include <stdint.h> |
| | | |
| | | static inline unsigned char xnor(unsigned char a, unsigned char b) { |
| | | //return a == b; |
| | | return !(a^b); |
| | | } |
| | | |
| | | // INT-32 |
| | | static inline uint32_t get_bit_int32(uint32_t const*const src, size_t index) { |
| | | size_t src_i = index / 32; |
| | | int src_shift = index % 32; |
| | | unsigned char val = (src[src_i] & (1 << src_shift)) > 0; |
| | | return val; |
| | | } |
| | | |
| | | static inline uint32_t xnor_int32(uint32_t a, uint32_t b) { |
| | | return ~(a^b); |
| | | } |
| | | |
| | | static inline uint64_t xnor_int64(uint64_t a, uint64_t b) { |
| | | return ~(a^b); |
| | | } |
| | | |
| | | |
| | | static inline uint32_t fill_bit_int32(char src) { |
| | | if (src == 0) return 0x00000000; |
| | | else return 0xFFFFFFFF; |
| | | } |
| | | |
| | | static inline uint64_t fill_bit_int64(char src) { |
| | | if (src == 0) return 0x0000000000000000; |
| | | else return 0xFFFFFFFFFFFFFFFF; |
| | | } |
| | | |
| | | void binary_int32_printf(uint32_t src) { |
| | | int i; |
| | | for (i = 0; i < 32; ++i) { |
| | | if (src & 1) printf("1"); |
| | | else printf("0"); |
| | | src = src >> 1; |
| | | } |
| | | printf("\n"); |
| | | } |
| | | |
| | | void binary_int64_printf(uint64_t src) { |
| | | int i; |
| | | for (i = 0; i < 64; ++i) { |
| | | if (src & 1) printf("1"); |
| | | else printf("0"); |
| | | src = src >> 1; |
| | | } |
| | | printf("\n"); |
| | | } |
| | | |
| | | /* |
| | | void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | | float *C, int ldc, float *mean_arr) |
| | | { |
| | | int i,j,k; |
| | | for(i = 0; i < M; ++i){ |
| | | for(k = 0; k < K; ++k){ |
| | | register float A_PART = ALPHA*A[i*lda+k]; |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc+j] += A_PART*B[k*ldb+j]; |
| | | int *count_arr = calloc(M*N, sizeof(int)); |
| | | |
| | | int i, j, k; |
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] |
| | | for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216] |
| | | char a_bit = get_bit(A, i*lda + k); |
| | | |
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] |
| | | char b_bit = get_bit(B, k*ldb + j); |
| | | count_arr[i*ldc + j] += xnor(a_bit, b_bit); |
| | | } |
| | | } |
| | | } |
| | | |
| | | for (i = 0; i < M; ++i) { |
| | | float mean_val = mean_arr[i]; |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val; |
| | | } |
| | | } |
| | | free(count_arr); |
| | | } |
| | | */ |
| | | |
| | | /* |
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | | float *C, int ldc, float *mean_arr) |
| | | { |
| | | int *count_arr = calloc(M*N, sizeof(int)); |
| | | |
| | | int i, j, k; |
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] |
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] |
| | | for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216] |
| | | char a_bit = get_bit(A, i*lda + k); |
| | | char b_bit = get_bit(B, j*ldb + k); |
| | | count_arr[i*ldc + j] += xnor(a_bit, b_bit); |
| | | } |
| | | } |
| | | } |
| | | |
| | | for (i = 0; i < M; ++i) { |
| | | float mean_val = mean_arr[i]; |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val; |
| | | } |
| | | } |
| | | free(count_arr); |
| | | } |
| | | */ |
| | | |
| | | /* |
| | | void gemm_nn_custom_bin_mean(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | | float *C, int ldc, float *mean_arr) |
| | | { |
| | | int *count_arr = calloc(M*N, sizeof(int)); |
| | | |
| | | int i, j, k, h; |
| | | |
| | | #pragma omp parallel for |
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] |
| | | for (k = 0; k < K; ++k) { // l.size*l.size*l.c - one filter size [27 - 9216] |
| | | const char a_bit = get_bit(A, i*lda + k); |
| | | uint64_t a_bit64 = fill_bit_int64(a_bit); |
| | | int k_ldb = k*ldb; |
| | | |
| | | for (j = 0; j < N; j += 64) { // out_h*out_w - one channel output size [169 - 173056] |
| | | if ((N - j > 64) && (k_ldb % 8 == 0)) { |
| | | uint64_t b_bit64 = *((uint64_t *)(B + (k_ldb + j) / 8)); |
| | | uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64); |
| | | //printf("\n %d \n",__builtin_popcountll(c_bit64)); // gcc |
| | | printf("\n %d \n", __popcnt64(c_bit64)); // msvs |
| | | |
| | | int h; |
| | | for (h = 0; h < 64; ++h) |
| | | if ((c_bit64 >> h) & 1) count_arr[i*ldc + j + h] += 1; |
| | | |
| | | //binary_int64_printf(a_bit64); |
| | | //binary_int64_printf(b_bit64); |
| | | //binary_int64_printf(c_bit64); |
| | | } |
| | | else { |
| | | for (; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] |
| | | char b_bit = get_bit(B, k_ldb + j); |
| | | if (xnor(a_bit, b_bit)) count_arr[i*ldc + j] += 1; |
| | | } |
| | | } |
| | | |
| | | } |
| | | } |
| | | } |
| | | |
| | | if (mean_arr) { |
| | | //int K_2 = K / 2; |
| | | for (i = 0; i < M; ++i) { |
| | | float mean_val = mean_arr[i]; |
| | | //float mean_val2 = 2 * mean_val; |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] = (2 * count_arr[i*ldc + j] - K) * mean_val; |
| | | //C[i*ldc + j] = (count_arr[i*ldc + j] - K_2) *mean_val2; |
| | | } |
| | | } |
| | | } |
| | | else { |
| | | for (i = 0; i < M; ++i) { |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] = count_arr[i*ldc + j] - K / 2; |
| | | } |
| | | } |
| | | } |
| | | |
| | | free(count_arr); |
| | | |
| | | //getchar(); |
| | | } |
| | | */ |
| | | |
| | | |
| | | /* |
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | | float *C, int ldc, float *mean_arr) |
| | | { |
| | | int i, j, k, h; |
| | | |
| | | #pragma omp parallel for |
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] |
| | | float mean_val = mean_arr[i]; |
| | | |
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] |
| | | int count = 0; |
| | | |
| | | for (k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216] |
| | | uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8)); |
| | | uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8)); |
| | | uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64); |
| | | |
| | | #ifdef WIN32 |
| | | int tmp_count = __popcnt64(c_bit64); |
| | | #else |
| | | int tmp_count = __builtin_popcountll(c_bit64); |
| | | #endif |
| | | |
| | | if (K - k < 64) tmp_count = tmp_count - (64 - (K - k)); // remove extra bits |
| | | count += tmp_count; |
| | | //binary_int64_printf(c_bit64); |
| | | //printf(", count = %d \n\n", tmp_count); |
| | | } |
| | | |
| | | C[i*ldc + j] = (2 * count - K) * mean_val; |
| | | } |
| | | } |
| | | } |
| | | */ |
| | | |
| | | //---------------------------- |
| | | |
| | | |
| | | #if (defined(__AVX__) && defined(__x86_64__)) || defined(_WIN64) |
| | | |
| | | #define OSXSAVEFlag (1UL<<27) |
| | | #define AVXFlag ((1UL<<28)|OSXSAVEFlag) |
| | | #define FMAFlag ((1UL<<12)|AVXFlag|OSXSAVEFlag) |
| | | #define CLMULFlag ((1UL<< 1)|AVXFlag|OSXSAVEFlag) |
| | | #define VAESFlag ((1UL<<25)|AVXFlag|OSXSAVEFlag) |
| | | |
| | | #ifdef _WIN64 |
| | | #include <intrin.h> |
| | | #include <ammintrin.h> |
| | | #include <immintrin.h> |
| | | #include <smmintrin.h> |
| | | |
| | | #else // Linux GCC/Clang |
| | | #include <x86intrin.h> |
| | | #include <ammintrin.h> |
| | | #include <immintrin.h> |
| | | #include <smmintrin.h> |
| | | #include <cpuid.h> |
| | | |
| | | void asm_cpuid(uint32_t* abcd, uint32_t eax) |
| | | { |
| | | uint32_t ebx = 0, edx = 0, ecx = 0; |
| | | |
| | | // EBX is saved to EDI and later restored |
| | | __asm__("movl %%ebx, %%edi;" |
| | | "cpuid;" |
| | | "xchgl %%ebx, %%edi;" |
| | | : "=D"(ebx), |
| | | "+a"(eax), "+c"(ecx), "=d"(edx)); |
| | | |
| | | abcd[0] = eax; |
| | | abcd[1] = ebx; |
| | | abcd[2] = ecx; |
| | | abcd[3] = edx; |
| | | } |
| | | |
| | | #endif |
| | | |
| | | int simd_detect_x86(unsigned int idFeature) |
| | | { |
| | | uint32_t regs[4]; // EAX, EBX, ECX, EDX; |
| | | #ifdef _WIN32 |
| | | __cpuid(regs, 0); |
| | | if (regs[0] > 1U) __cpuid(regs, 1); |
| | | #else |
| | | __get_cpuid(0, ®s[0], ®s[1], ®s[2], ®s[3]); |
| | | if(regs[0] > 1U) __get_cpuid(1, ®s[0], ®s[1], ®s[2], ®s[3]); |
| | | #endif |
| | | |
| | | if ((regs[2] & idFeature) != idFeature) |
| | | return 0; |
| | | return 1; |
| | | } |
| | | |
| | | int is_fma_avx() { |
| | | static int result = -1; |
| | | if (result == -1) { |
| | | result = simd_detect_x86(AVXFlag); |
| | | if (result == 1) printf(" Used AVX \n"); |
| | | else printf(" Not used AVX \n"); |
| | | } |
| | | return result; |
| | | } |
| | | |
| | | // https://software.intel.com/sites/landingpage/IntrinsicsGuide |
| | | void gemm_nn(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | | int i, j, k; |
| | | if (is_fma_avx() == 1) { // AVX |
| | | for (i = 0; i < M; ++i) { |
| | | for (k = 0; k < K; ++k) { |
| | | float A_PART = ALPHA*A[i*lda + k]; |
| | | __m256 a256, b256, c256, result256; // AVX |
| | | a256 = _mm256_set1_ps(A_PART); |
| | | for (j = 0; j < N - 8; j += 8) { |
| | | b256 = _mm256_loadu_ps(&B[k*ldb + j]); |
| | | c256 = _mm256_loadu_ps(&C[i*ldc + j]); |
| | | // FMA - Intel Haswell (2013), AMD Piledriver (2012) |
| | | //result256 = _mm256_fmadd_ps(a256, b256, c256); |
| | | result256 = _mm256_mul_ps(a256, b256); |
| | | result256 = _mm256_add_ps(result256, c256); |
| | | _mm256_storeu_ps(&C[i*ldc + j], result256); |
| | | } |
| | | |
| | | int prev_end = (N % 8 == 0) ? (N - 8) : (N / 8) * 8; |
| | | for (j = prev_end; j < N; ++j) |
| | | C[i*ldc + j] += A_PART*B[k*ldb + j]; |
| | | } |
| | | } |
| | | } |
| | | else { |
| | | for (i = 0; i < M; ++i) { |
| | | for (k = 0; k < K; ++k) { |
| | | register float A_PART = ALPHA*A[i*lda + k]; |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] += A_PART*B[k*ldb + j]; |
| | | } |
| | | /* // SSE |
| | | __m128 a128, b128, c128, result128; // SSE |
| | | a128 = _mm_set1_ps(A_PART); |
| | | for (j = 0; j < N - 4; j += 4) { |
| | | b128 = _mm_loadu_ps(&B[k*ldb + j]); |
| | | c128 = _mm_loadu_ps(&C[i*ldc + j]); |
| | | //result128 = _mm_fmadd_ps(a128, b128, c128); |
| | | result128 = _mm_mul_ps(a128, b128); |
| | | result128 = _mm_add_ps(result128, c128); |
| | | _mm_storeu_ps(&C[i*ldc + j], result128); |
| | | } |
| | | |
| | | int prev_end = (N % 4 == 0) ? (N - 4) : (N / 4) * 4; |
| | | for (j = prev_end; j < N; ++j){ |
| | | C[i*ldc + j] += A_PART*B[k*ldb + j]; |
| | | } |
| | | */ |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void gemm_nt(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | |
| | | // http://graphics.stanford.edu/~seander/bithacks.html |
| | | // https://stackoverflow.com/questions/17354971/fast-counting-the-number-of-set-bits-in-m128i-register |
| | | // https://arxiv.org/pdf/1611.07612.pdf |
| | | |
| | | static inline int popcnt128(__m128i n) { |
| | | const __m128i n_hi = _mm_unpackhi_epi64(n, n); |
| | | #ifdef _MSC_VER |
| | | return __popcnt64(_mm_cvtsi128_si64(n)) + __popcnt64(_mm_cvtsi128_si64(n_hi)); |
| | | #else |
| | | return __popcntq(_mm_cvtsi128_si64(n)) + __popcntq(_mm_cvtsi128_si64(n_hi)); |
| | | #endif |
| | | } |
| | | |
| | | static inline int popcnt256(__m256i n) { |
| | | return popcnt128(_mm256_extractf128_si256(n, 0)) + popcnt128(_mm256_extractf128_si256(n, 1)); |
| | | } |
| | | |
| | | static inline __m256i count256(__m256i v) { |
| | | __m256i lookup = |
| | | _mm256_setr_epi8(0, 1, 1, 2, 1, 2, 2, 3, 1, 2, |
| | | 2, 3, 2, 3, 3, 4, 0, 1, 1, 2, 1, 2, 2, 3, |
| | | 1, 2, 2, 3, 2, 3, 3, 4); |
| | | |
| | | __m256i low_mask = _mm256_set1_epi8(0x0f); |
| | | |
| | | __m256i lo = _mm256_and_si256(v, low_mask); |
| | | __m256i hi = _mm256_and_si256(_mm256_srli_epi32(v, 4), low_mask); |
| | | __m256i popcnt1 = _mm256_shuffle_epi8(lookup, lo); |
| | | __m256i popcnt2 = _mm256_shuffle_epi8(lookup, hi); |
| | | __m256i total = _mm256_add_epi8(popcnt1, popcnt2); |
| | | |
| | | return _mm256_sad_epu8(total, _mm256_setzero_si256()); |
| | | } |
| | | |
| | | static inline int popcnt256_custom(__m256i n) { |
| | | __m256i val = count256(n); |
| | | |
| | | return val.m256i_i64[0] + |
| | | val.m256i_i64[1] + |
| | | val.m256i_i64[2] + |
| | | val.m256i_i64[3]; |
| | | } |
| | | |
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | | float *C, int ldc, float *mean_arr) |
| | | { |
| | | int i; |
| | | |
| | | #if defined(_OPENMP) |
| | | static int max_num_threads = 0; |
| | | if (max_num_threads == 0) { |
| | | max_num_threads = omp_get_max_threads(); |
| | | omp_set_num_threads(max_num_threads / 2); |
| | | } |
| | | #endif |
| | | |
| | | #pragma omp parallel for |
| | | for (i = 0; i < M; ++i) |
| | | { // l.n - filters [16 - 55 - 1024] |
| | | float mean_val = mean_arr[i]; |
| | | int j, k; |
| | | __m256i all_1 = _mm256_set1_epi8(255); |
| | | |
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] |
| | | int count = 0; |
| | | const int bit_step = 256; |
| | | __m256i count_sum = _mm256_set1_epi8(0); |
| | | |
| | | for (k = 0; k < K; k += bit_step) { // l.size*l.size*l.c - one filter size [27 - 9216] |
| | | __m256i a_bit256 = _mm256_loadu_si256((__m256i *)(A + (i*lda + k) / 8)); |
| | | __m256i b_bit256 = _mm256_loadu_si256((__m256i *)(B + (j*ldb + k) / 8)); |
| | | __m256i xor256 = _mm256_xor_si256(a_bit256, b_bit256); // xnor = not(xor(a,b)) |
| | | __m256i c_bit256 = _mm256_andnot_si256(xor256, all_1); // can be optimized - we can do other NOT for wegihts once and do not do this NOT |
| | | |
| | | count_sum = _mm256_add_epi64(count256(c_bit256), count_sum); // MulaÂ’s algorithm |
| | | |
| | | //count += popcnt256(c_bit256); |
| | | |
| | | //binary_int64_printf(c_bit64); |
| | | //printf(", count = %d \n\n", tmp_count); |
| | | } |
| | | |
| | | // count of 1 bits |
| | | count = count_sum.m256i_i64[0] + |
| | | count_sum.m256i_i64[1] + |
| | | count_sum.m256i_i64[2] + |
| | | count_sum.m256i_i64[3]; |
| | | |
| | | int f1 = (K % bit_step == 0) ? 0 : (bit_step - (K % bit_step)); |
| | | count = count - f1; // remove extra bits (from empty space for align only) |
| | | |
| | | C[i*ldc + j] = (2 * count - K) * mean_val; |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | static inline float im2col_get_pixel(float *im, int height, int width, int channels, |
| | | int row, int col, int channel, int pad) |
| | | { |
| | | row -= pad; |
| | | col -= pad; |
| | | |
| | | if (row < 0 || col < 0 || |
| | | row >= height || col >= width) return 0; |
| | | return im[col + width*(row + height*channel)]; |
| | | } |
| | | |
| | | //From Berkeley Vision's Caffe! |
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE |
| | | void im2col_cpu_custom(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col) |
| | | { |
| | | |
| | | int c, h, w; |
| | | int height_col = (height + 2 * pad - ksize) / stride + 1; |
| | | int width_col = (width + 2 * pad - ksize) / stride + 1; |
| | | int channels_col = channels * ksize * ksize; |
| | | |
| | | // optimized version |
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1) |
| | | { |
| | | #pragma omp parallel for |
| | | for (c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for (h = pad; h < height_col-pad; ++h) { |
| | | for (w = pad; w < width_col-pad-8; w += 8) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | |
| | | //data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | __m256 src256 = _mm256_loadu_ps((__m256i *)(&data_im[im_col + width*(im_row + height*c_im)])); |
| | | _mm256_storeu_ps(&data_col[col_index], src256); |
| | | } |
| | | |
| | | for (; w < width_col - pad; ++w) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | |
| | | data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = 0; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = width_col-1; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = 0; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = height_col-1; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | } |
| | | |
| | | } |
| | | else { |
| | | //printf("\n Error: is no non-optimized version \n"); |
| | | im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col); |
| | | } |
| | | } |
| | | |
| | | void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a) |
| | | { |
| | | int i; |
| | | if (a == LINEAR) |
| | | {} |
| | | else if (a == LEAKY) |
| | | { |
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| | | __m256 all256_01 = _mm256_set1_ps(0.1F); |
| | | |
| | | for (i = 0; i < n; i += 8) { |
| | | //x[i] = (x[i]>0) ? x[i] : .1*x[i]; |
| | | |
| | | __m256 src256 = _mm256_loadu_ps((__m256 *)(&x[i])); |
| | | __m256 mult256 = _mm256_mul_ps((src256), all256_01); // mult * 0.1 |
| | | |
| | | __m256i sign256 = _mm256_and_si256(_mm256_castps_si256(src256), all256_sing1); // check sign in 8 x 32-bit floats |
| | | |
| | | __m256 result256 = _mm256_blendv_ps(src256, mult256, _mm256_castsi256_ps(sign256)); // (sign>0) ? src : mult; |
| | | _mm256_storeu_ps((__m256 *)(&x[i]), result256); |
| | | } |
| | | |
| | | for (; i < n; ++i) { |
| | | x[i] = (x[i]>0) ? x[i] : .1*x[i]; |
| | | } |
| | | } |
| | | else { |
| | | for (i = 0; i < n; ++i) { |
| | | x[i] = activate(x[i], a); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void float_to_bit(float *src, unsigned char *dst, size_t size) |
| | | { |
| | | size_t dst_size = size / 8 + 1; |
| | | memset(dst, 0, dst_size); |
| | | |
| | | size_t i; |
| | | __m256i all256_sing1 = _mm256_set_epi32(0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000); |
| | | |
| | | for (i = 0; i < size; i+=8) |
| | | { |
| | | __m256i src256 = _mm256_loadu_si256((__m256i *)(&src[i])); |
| | | __m256i result256 = _mm256_and_si256(src256, all256_sing1); // check sign in 8 x 32-bit floats |
| | | |
| | | uint32_t mask = _mm256_movemask_ps(_mm256_castsi256_ps(result256)); // (val >= 0) ? 0 : 1 |
| | | mask = ~mask; // inverse mask, (val >= 0) ? 1 : 0 |
| | | |
| | | dst[i / 8] = mask; |
| | | } |
| | | } |
| | | |
| | | static inline void transpose4x4_SSE(float *A, float *B, const int lda, const int ldb) |
| | | { |
| | | __m128 row1 = _mm_load_ps(&A[0 * lda]); |
| | | __m128 row2 = _mm_load_ps(&A[1 * lda]); |
| | | __m128 row3 = _mm_load_ps(&A[2 * lda]); |
| | | __m128 row4 = _mm_load_ps(&A[3 * lda]); |
| | | _MM_TRANSPOSE4_PS(row1, row2, row3, row4); |
| | | _mm_store_ps(&B[0 * ldb], row1); |
| | | _mm_store_ps(&B[1 * ldb], row2); |
| | | _mm_store_ps(&B[2 * ldb], row3); |
| | | _mm_store_ps(&B[3 * ldb], row4); |
| | | } |
| | | |
| | | void transpose_block_SSE4x4(float *A, float *B, const int n, const int m, |
| | | const int lda, const int ldb, const int block_size) |
| | | { |
| | | int i; |
| | | if (block_size % 4 == 0) { |
| | | #pragma omp parallel for |
| | | for (i = 0; i < n; i += block_size) { |
| | | int j, i2, j2; |
| | | for (j = 0; j < m; j += block_size) { |
| | | int max_i2 = i + block_size < n ? i + block_size : n; |
| | | int max_j2 = j + block_size < m ? j + block_size : m; |
| | | for (i2 = i; i2 < max_i2; i2 += 4) { |
| | | for (j2 = j; j2 < max_j2; j2 += 4) { |
| | | transpose4x4_SSE(&A[i2*lda + j2], &B[j2*ldb + i2], lda, ldb); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | else { |
| | | #pragma omp parallel for |
| | | for (i = 0; i < n; i += block_size) { |
| | | int j, i2, j2; |
| | | for (j = 0; j < m; j += block_size) { |
| | | int max_i2 = i + block_size < n ? i + block_size : n; |
| | | int max_j2 = j + block_size < m ? j + block_size : m; |
| | | for (i2 = i; i2 < max_i2; ++i2) { |
| | | for (j2 = j; j2 < max_j2; ++j2) { |
| | | B[j2*ldb + i2] = A[i2*lda + j2]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | |
| | | #else |
| | | |
| | | void gemm_nn(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | | int i, j, k; |
| | | for (i = 0; i < M; ++i) { |
| | | for (k = 0; k < K; ++k) { |
| | | register float A_PART = ALPHA*A[i*lda + k]; |
| | | for (j = 0; j < N; ++j) { |
| | | C[i*ldc + j] += A_PART*B[k*ldb + j]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | void gemm_nn_custom_bin_mean_transposed(int M, int N, int K, float ALPHA_UNUSED, |
| | | unsigned char *A, int lda, |
| | | unsigned char *B, int ldb, |
| | | float *C, int ldc, float *mean_arr) |
| | | { |
| | | int i, j, k, h; |
| | | |
| | | #pragma omp parallel for |
| | | for (i = 0; i < M; ++i) { // l.n - filters [16 - 55 - 1024] |
| | | float mean_val = mean_arr[i]; |
| | | |
| | | for (j = 0; j < N; ++j) { // out_h*out_w - one channel output size [169 - 173056] |
| | | int count = 0; |
| | | |
| | | for (k = 0; k < K; k += 64) { // l.size*l.size*l.c - one filter size [27 - 9216] |
| | | uint64_t a_bit64 = *((uint64_t *)(A + (i*lda + k) / 8)); |
| | | uint64_t b_bit64 = *((uint64_t *)(B + (j*ldb + k) / 8)); |
| | | uint64_t c_bit64 = xnor_int64(a_bit64, b_bit64); |
| | | |
| | | #ifdef WIN32 |
| | | int tmp_count = __popcnt64(c_bit64); |
| | | #else |
| | | int tmp_count = __builtin_popcountll(c_bit64); |
| | | #endif |
| | | |
| | | if (K - k < 64) tmp_count = tmp_count - (64 - (K - k)); // remove extra bits |
| | | count += tmp_count; |
| | | //binary_int64_printf(c_bit64); |
| | | //printf(", count = %d \n\n", tmp_count); |
| | | } |
| | | |
| | | C[i*ldc + j] = (2 * count - K) * mean_val; |
| | | } |
| | | } |
| | | } |
| | | |
| | | //From Berkeley Vision's Caffe! |
| | | //https://github.com/BVLC/caffe/blob/master/LICENSE |
| | | void im2col_cpu_custom(float* data_im, |
| | | int channels, int height, int width, |
| | | int ksize, int stride, int pad, float* data_col) |
| | | { |
| | | |
| | | int c, h, w; |
| | | int height_col = (height + 2 * pad - ksize) / stride + 1; |
| | | int width_col = (width + 2 * pad - ksize) / stride + 1; |
| | | int channels_col = channels * ksize * ksize; |
| | | |
| | | // optimized version |
| | | if (height_col == height && width_col == width && stride == 1 && pad == 1) |
| | | { |
| | | #pragma omp parallel for |
| | | for (c = 0; c < channels_col; ++c) { |
| | | int w_offset = c % ksize; |
| | | int h_offset = (c / ksize) % ksize; |
| | | int c_im = c / ksize / ksize; |
| | | for (h = pad; h < height_col - pad; ++h) { |
| | | for (w = pad; w < width_col - pad; ++w) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | |
| | | data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | } |
| | | |
| | | for (; w < width_col - pad; ++w) { |
| | | int im_row = h_offset + h - pad; |
| | | int im_col = w_offset + w - pad; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | |
| | | data_col[col_index] = data_im[im_col + width*(im_row + height*c_im)]; |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = 0; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | w = width_col - 1; |
| | | for (h = 0; h < height_col; ++h) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = 0; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | |
| | | { |
| | | h = height_col - 1; |
| | | for (w = 0; w < width_col; ++w) { |
| | | int im_row = h_offset + h; |
| | | int im_col = w_offset + w; |
| | | int col_index = (c * height_col + h) * width_col + w; |
| | | data_col[col_index] = im2col_get_pixel(data_im, height, width, channels, |
| | | im_row, im_col, c_im, pad); |
| | | } |
| | | } |
| | | } |
| | | |
| | | } |
| | | else { |
| | | //printf("\n Error: is no non-optimized version \n"); |
| | | im2col_cpu(data_im, channels, height, width, ksize, stride, pad, data_col); |
| | | } |
| | | } |
| | | |
| | | void activate_array_cpu_custom(float *x, const int n, const ACTIVATION a) |
| | | { |
| | | int i; |
| | | if (a == LINEAR) |
| | | { |
| | | } |
| | | else if (a == LEAKY) |
| | | { |
| | | for (i = 0; i < n; ++i) { |
| | | x[i] = (x[i]>0) ? x[i] : .1*x[i]; |
| | | } |
| | | } |
| | | else { |
| | | for (i = 0; i < n; ++i) { |
| | | x[i] = activate(x[i], a); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void float_to_bit(float *src, unsigned char *dst, size_t size) |
| | | { |
| | | size_t dst_size = size / 8 + 1; |
| | | memset(dst, 0, dst_size); |
| | | |
| | | size_t i; |
| | | char *byte_arr = calloc(size, sizeof(char)); |
| | | for (i = 0; i < size; ++i) { |
| | | if (src[i] > 0) byte_arr[i] = 1; |
| | | } |
| | | |
| | | //for (i = 0; i < size; ++i) { |
| | | // dst[i / 8] |= byte_arr[i] << (i % 8); |
| | | //} |
| | | |
| | | for (i = 0; i < size; i += 8) { |
| | | char dst_tmp = 0; |
| | | dst_tmp |= byte_arr[i + 0] << 0; |
| | | dst_tmp |= byte_arr[i + 1] << 1; |
| | | dst_tmp |= byte_arr[i + 2] << 2; |
| | | dst_tmp |= byte_arr[i + 3] << 3; |
| | | dst_tmp |= byte_arr[i + 4] << 4; |
| | | dst_tmp |= byte_arr[i + 5] << 5; |
| | | dst_tmp |= byte_arr[i + 6] << 6; |
| | | dst_tmp |= byte_arr[i + 7] << 7; |
| | | dst[i / 8] = dst_tmp; |
| | | } |
| | | free(byte_arr); |
| | | } |
| | | |
| | | static inline void transpose_scalar_block(float *A, float *B, const int lda, const int ldb, const int block_size) |
| | | { |
| | | int i, j; |
| | | //#pragma omp parallel for |
| | | for (i = 0; i<block_size; i++) { |
| | | for (j = 0; j<block_size; j++) { |
| | | B[j*ldb + i] = A[i*lda + j]; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void transpose_block_SSE4x4(float *A, float *B, const int n, const int m, |
| | | const int lda, const int ldb, const int block_size) |
| | | { |
| | | int i; |
| | | #pragma omp parallel for |
| | | for (i = 0; i < n; i += block_size) { |
| | | int j, i2, j2; |
| | | for (j = 0; j < m; j += block_size) { |
| | | int max_i2 = i + block_size < n ? i + block_size : n; |
| | | int max_j2 = j + block_size < m ? j + block_size : m; |
| | | for (i2 = i; i2 < max_i2; ++i2) { |
| | | for (j2 = j; j2 < max_j2; ++j2) { |
| | | B[j2*ldb + i2] = A[i2*lda + j2]; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | } |
| | | #endif // __x86_64 |
| | | |
| | | void gemm_nt(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | |
| | | } |
| | | } |
| | | |
| | | void gemm_tn(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | void gemm_tn(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | |
| | | } |
| | | } |
| | | |
| | | void gemm_tt(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | void gemm_tt(int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float *C, int ldc) |
| | | { |
| | |
| | | } |
| | | |
| | | |
| | | void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | void gemm_cpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float BETA, |
| | | float *C, int ldc) |
| | | { |
| | | //printf("cpu: %d %d %d %d %d %f %d %d %f %d\n",TA, TB, M, N, K, ALPHA, lda, ldb, BETA, ldc); |
| | | int i, j; |
| | | for(i = 0; i < M; ++i){ |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc + j] *= BETA; |
| | | if (BETA != 1){ |
| | | int i, j; |
| | | for(i = 0; i < M; ++i){ |
| | | for(j = 0; j < N; ++j){ |
| | | C[i*ldc + j] *= BETA; |
| | | } |
| | | } |
| | | } |
| | | if(!TA && !TB) |
| | | gemm_nn(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); |
| | | else if(TA && !TB) |
| | | gemm_tn(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); |
| | | else if(!TA && TB) |
| | | gemm_nt(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); |
| | | else |
| | | gemm_tt(M, N, K, ALPHA,A,lda, B, ldb,C,ldc); |
| | | |
| | | int t; |
| | | #pragma omp parallel for |
| | | for (t = 0; t < M; ++t) { |
| | | if (!TA && !TB) |
| | | gemm_nn(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc); |
| | | else if (TA && !TB) |
| | | gemm_tn(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc); |
| | | else if (!TA && TB) |
| | | gemm_nt(1, N, K, ALPHA, A + t*lda, lda, B, ldb, C + t*ldc, ldc); |
| | | else |
| | | gemm_tt(1, N, K, ALPHA, A + t, lda, B, ldb, C + t*ldc, ldc); |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | #include "opencl.h" |
| | | #include <math.h> |
| | | |
| | | #ifdef CLBLAS |
| | | #include <clBLAS.h> |
| | | #endif |
| | | |
| | | #define STR_HELPER(x) #x |
| | | #define STR(x) STR_HELPER(x) |
| | | |
| | | #ifdef __APPLE__ |
| | | #define BLOCK 1 |
| | | #else |
| | | #define BLOCK 16 |
| | | #endif |
| | | |
| | | cl_kernel get_gemm_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel gemm_kernel; |
| | | if(!init){ |
| | | gemm_kernel = get_kernel("src/gemm.cl", "gemm", "-D BLOCK=" STR(BLOCK) ); |
| | | init = 1; |
| | | } |
| | | return gemm_kernel; |
| | | } |
| | | |
| | | cl_kernel get_gemm_nt_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel gemm_kernel; |
| | | if(!init){ |
| | | gemm_kernel = get_kernel("src/gemm.cl", "gemm_nt", "-D BLOCK=" STR(BLOCK) ); |
| | | init = 1; |
| | | } |
| | | return gemm_kernel; |
| | | } |
| | | |
| | | cl_kernel get_gemm_tn_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel gemm_kernel; |
| | | if(!init){ |
| | | gemm_kernel = get_kernel("src/gemm.cl", "gemm_tn", "-D BLOCK=" STR(BLOCK) ); |
| | | init = 1; |
| | | } |
| | | return gemm_kernel; |
| | | } |
| | | |
| | | cl_kernel get_gemm_nn_kernel() |
| | | { |
| | | static int init = 0; |
| | | static cl_kernel gemm_kernel; |
| | | if(!init){ |
| | | gemm_kernel = get_kernel("src/gemm.cl", "gemm_nn", "-D BLOCK=" STR(BLOCK) ); |
| | | init = 1; |
| | | } |
| | | return gemm_kernel; |
| | | } |
| | | |
| | | void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | cl_mem A_gpu, int lda, |
| | | cl_mem B_gpu, int ldb, |
| | | void gemm_ongpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A_gpu, int lda, |
| | | float *B_gpu, int ldb, |
| | | float BETA, |
| | | cl_mem C_gpu, int ldc) |
| | | float *C_gpu, int ldc) |
| | | { |
| | | gemm_ongpu_offset(TA, TB, M, N, K, ALPHA, A_gpu, 0, lda, B_gpu, 0, ldb, BETA, C_gpu, 0, ldc); |
| | | cublasHandle_t handle = blas_handle(); |
| | | cudaError_t stream_status = cublasSetStream(handle, get_cuda_stream()); |
| | | cudaError_t status = cublasSgemm(handle, (TB ? CUBLAS_OP_T : CUBLAS_OP_N), |
| | | (TA ? CUBLAS_OP_T : CUBLAS_OP_N), N, M, K, &ALPHA, B_gpu, ldb, A_gpu, lda, &BETA, C_gpu, ldc); |
| | | check_error(status); |
| | | } |
| | | |
| | | void gemm_ongpu_offset(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | cl_mem A_gpu, int a_off, int lda, |
| | | cl_mem B_gpu, int b_off, int ldb, |
| | | float BETA, |
| | | cl_mem C_gpu, int c_off, int ldc) |
| | | { |
| | | #ifdef CLBLAS |
| | | cl_setup(); |
| | | cl_command_queue queue = cl.queue; |
| | | cl_event event; |
| | | cl.error = clblasSgemm(clblasRowMajor, TA?clblasTrans:clblasNoTrans, TB?clblasTrans:clblasNoTrans,M, N, K,ALPHA, A_gpu, a_off, lda,B_gpu, b_off, ldb,BETA, C_gpu, c_off, ldc,1, &queue, 0, NULL, &event); |
| | | check_error(cl); |
| | | #else |
| | | //printf("gpu: %d %d %d %d %d\n",TA, TB, M, N, K); |
| | | cl_setup(); |
| | | cl_kernel gemm_kernel = get_gemm_kernel(); |
| | | if(!TA && !TB) gemm_kernel = get_gemm_nn_kernel(); |
| | | if(!TA && TB) gemm_kernel = get_gemm_nt_kernel(); |
| | | if(TA && !TB) gemm_kernel = get_gemm_tn_kernel(); |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | | cl_uint i = 0; |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TA), (void*) &TA); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(TB), (void*) &TB); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(M), (void*) &M); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(N), (void*) &N); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(K), (void*) &K); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ALPHA), (void*) &ALPHA); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(A_gpu), (void*) &A_gpu); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(a_off), (void*) &a_off); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(lda), (void*) &lda); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(B_gpu), (void*) &B_gpu); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(b_off), (void*) &b_off); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldb), (void*) &ldb); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(BETA), (void*) &BETA); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(C_gpu), (void*) &C_gpu); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(c_off), (void*) &c_off); |
| | | cl.error = clSetKernelArg(gemm_kernel, i++, sizeof(ldc), (void*) &ldc); |
| | | check_error(cl); |
| | | |
| | | const size_t global_size[] = {ceil((float)N/BLOCK)*BLOCK, ceil((float)M/BLOCK)*BLOCK}; |
| | | const size_t local_size[] = {BLOCK, BLOCK}; |
| | | |
| | | cl.error = clEnqueueNDRangeKernel(queue, gemm_kernel, 2, 0, global_size, local_size, 0, 0, 0); |
| | | check_error(cl); |
| | | #endif |
| | | } |
| | | |
| | | void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | void gemm_gpu(int TA, int TB, int M, int N, int K, float ALPHA, |
| | | float *A, int lda, |
| | | float *B, int ldb, |
| | | float BETA, |
| | | float *C, int ldc) |
| | | { |
| | | cl_setup(); |
| | | cl_context context = cl.context; |
| | | cl_command_queue queue = cl.queue; |
| | | |
| | | size_t size = sizeof(float)*(TA ? lda*K:lda*M); |
| | | cl_mem A_gpu = clCreateBuffer(context, |
| | | CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, |
| | | size, A, &cl.error); |
| | | check_error(cl); |
| | | |
| | | size = sizeof(float)*(TB ? ldb*N:ldb*K); |
| | | cl_mem B_gpu = clCreateBuffer(context, |
| | | CL_MEM_READ_ONLY|CL_MEM_COPY_HOST_PTR, |
| | | size, B, &cl.error); |
| | | check_error(cl); |
| | | |
| | | size = sizeof(float)*(ldc*M); |
| | | cl_mem C_gpu = clCreateBuffer(context, |
| | | CL_MEM_READ_WRITE|CL_MEM_COPY_HOST_PTR, |
| | | size, C, &cl.error); |
| | | check_error(cl); |
| | | float *A_gpu = cuda_make_array(A, (TA ? lda*K:lda*M)); |
| | | float *B_gpu = cuda_make_array(B, (TB ? ldb*N : ldb*K)); |
| | | float *C_gpu = cuda_make_array(C, ldc*M); |
| | | |
| | | gemm_ongpu(TA, TB, M, N, K, ALPHA, A_gpu, lda, B_gpu, ldb, BETA, C_gpu, ldc); |
| | | |
| | | clEnqueueReadBuffer(queue, C_gpu, CL_TRUE, 0, size, C, 0, 0, 0); |
| | | check_error(cl); |
| | | |
| | | clReleaseMemObject(A_gpu); |
| | | clReleaseMemObject(B_gpu); |
| | | clReleaseMemObject(C_gpu); |
| | | cuda_pull_array(C_gpu, C, ldc*M); |
| | | cuda_free(A_gpu); |
| | | cuda_free(B_gpu); |
| | | cuda_free(C_gpu); |
| | | } |
| | | |
| | | #include <stdio.h> |
| | |
| | | |
| | | float *c = random_matrix(m,n); |
| | | |
| | | cl_mem a_cl = cl_make_array(a, m*k); |
| | | cl_mem b_cl = cl_make_array(b, k*n); |
| | | cl_mem c_cl = cl_make_array(c, m*n); |
| | | float *a_cl = cuda_make_array(a, m*k); |
| | | float *b_cl = cuda_make_array(b, k*n); |
| | | float *c_cl = cuda_make_array(c, m*n); |
| | | |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i<iter; ++i){ |
| | | gemm_ongpu(TA,TB,m,n,k,1,a_cl,lda,b_cl,ldb,1,c_cl,n); |
| | | cudaThreadSynchronize(); |
| | | } |
| | | double flop = m*n*k*iter; |
| | | double flop = ((double)m)*n*(2.*k + 2.)*iter; |
| | | double gflop = flop/pow(10., 9); |
| | | end = clock(); |
| | | double seconds = sec(end-start); |
| | | printf("Matrix Multiplication %dx%d * %dx%d, TA=%d, TB=%d: %lf s, %lf GFLOPS\n",m,k,k,n, TA, TB, seconds, gflop/seconds); |
| | | clReleaseMemObject(a_cl); |
| | | clReleaseMemObject(b_cl); |
| | | clReleaseMemObject(c_cl); |
| | | cuda_free(a_cl); |
| | | cuda_free(b_cl); |
| | | cuda_free(c_cl); |
| | | free(a); |
| | | free(b); |
| | | free(c); |
| | | } |
| | | |
| | | |
| | | void test_gpu_accuracy(int TA, int TB, int m, int k, int n) |
| | | { |
| | | srand(0); |
| | |
| | | int i; |
| | | //pm(m,k,b); |
| | | gemm_gpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c_gpu,n); |
| | | //printf("GPU\n"); |
| | | //pm(m, n, c_gpu); |
| | | |
| | | gemm_cpu(TA,TB,m,n,k,1,a,lda,b,ldb,1,c,n); |
| | | //printf("\n\nCPU\n"); |
| | | //pm(m, n, c); |
| | | double sse = 0; |
| | | for(i = 0; i < m*n; ++i) { |
| | |
| | | free(c_gpu); |
| | | } |
| | | |
| | | void test_gpu_blas() |
| | | int test_gpu_blas() |
| | | { |
| | | /* |
| | | test_gpu_accuracy(0,0,10,576,75); |
| | | test_gpu_accuracy(0,0,10,576,75); |
| | | |
| | | test_gpu_accuracy(0,0,17,10,10); |
| | | test_gpu_accuracy(1,0,17,10,10); |
| | | test_gpu_accuracy(0,1,17,10,10); |
| | | test_gpu_accuracy(1,1,17,10,10); |
| | | test_gpu_accuracy(0,0,17,10,10); |
| | | test_gpu_accuracy(1,0,17,10,10); |
| | | test_gpu_accuracy(0,1,17,10,10); |
| | | test_gpu_accuracy(1,1,17,10,10); |
| | | |
| | | test_gpu_accuracy(0,0,1000,10,100); |
| | | test_gpu_accuracy(1,0,1000,10,100); |
| | | test_gpu_accuracy(0,1,1000,10,100); |
| | | test_gpu_accuracy(1,1,1000,10,100); |
| | | test_gpu_accuracy(0,0,1000,10,100); |
| | | test_gpu_accuracy(1,0,1000,10,100); |
| | | test_gpu_accuracy(0,1,1000,10,100); |
| | | test_gpu_accuracy(1,1,1000,10,100); |
| | | |
| | | test_gpu_accuracy(0,0,10,10,10); |
| | | |
| | | time_ongpu(0,0,64,2916,363); |
| | | time_ongpu(0,0,64,2916,363); |
| | | time_ongpu(0,0,64,2916,363); |
| | | time_ongpu(0,0,192,729,1600); |
| | | time_ongpu(0,0,384,196,1728); |
| | | time_ongpu(0,0,256,196,3456); |
| | | time_ongpu(0,0,256,196,2304); |
| | | time_ongpu(0,0,128,4096,12544); |
| | | time_ongpu(0,0,128,4096,4096); |
| | | */ |
| | | time_ongpu(0,0,512,256,1152); |
| | | time_ongpu(0,0,128,1200,4096); |
| | | time_ongpu(0,0,128,1200,4096); |
| | | time_ongpu(0,0,128,1200,4096); |
| | | time_ongpu(0,0,64,75,12544); |
| | | time_ongpu(0,0,64,75,12544); |
| | | time_ongpu(0,0,64,75,12544); |
| | | time_ongpu(0,0,64,576,12544); |
| | | time_ongpu(0,0,256,2304,784); |
| | | time_ongpu(1,1,2304,256,784); |
| | | time_ongpu(0,0,512,4608,196); |
| | | time_ongpu(1,1,4608,512,196); |
| | | |
| | | time_ongpu(0,1,128,1200,4096); |
| | | time_ongpu(1,0,1200,4096,128); |
| | | time_ongpu(1,0,4096,1200,128); |
| | | time_ongpu(1,0,1200,128,4096); |
| | | |
| | | test_gpu_accuracy(0,0,512,256,1152); |
| | | test_gpu_accuracy(0,0,131,4093,1199); |
| | | test_gpu_accuracy(0,1,131,4093,1199); |
| | | test_gpu_accuracy(1,0,131,4093,1199); |
| | | test_gpu_accuracy(1,1,131,4093,1199); |
| | | /* |
| | | |
| | | time_ongpu(0,0,1024,1024,1024); |
| | | time_ongpu(0,1,1024,1024,1024); |
| | | time_ongpu(1,0,1024,1024,1024); |
| | | time_ongpu(1,1,1024,1024,1024); |
| | | |
| | | time_ongpu(0,0,128,4096,1200); |
| | | time_ongpu(0,1,128,4096,1200); |
| | | time_ongpu(1,0,128,4096,1200); |
| | | time_ongpu(1,1,128,4096,1200); |
| | | */ |
| | | |
| | | /* |
| | | time_gpu_random_matrix(0,0,1000,1000,100); |
| | | time_random_matrix(0,0,1000,1000,100); |
| | | |
| | | time_gpu_random_matrix(0,1,1000,1000,100); |
| | | time_random_matrix(0,1,1000,1000,100); |
| | | |
| | | time_gpu_random_matrix(1,0,1000,1000,100); |
| | | time_random_matrix(1,0,1000,1000,100); |
| | | |
| | | time_gpu_random_matrix(1,1,1000,1000,100); |
| | | time_random_matrix(1,1,1000,1000,100); |
| | | */ |
| | | |
| | | return 0; |
| | | } |
| | | #endif |
| | | |