AlexeyAB
2018-03-28 3fc3fd0f1f1924acb7195fe98fe68648e4056a09
src/network.c
@@ -27,6 +27,7 @@
#include "dropout_layer.h"
#include "route_layer.h"
#include "shortcut_layer.h"
#include "yolo_layer.h"
int get_current_batch(network net)
{
@@ -373,10 +374,14 @@
            resize_maxpool_layer(&l, w, h);
        }else if(l.type == REGION){
            resize_region_layer(&l, w, h);
      }else if (l.type == YOLO) {
         resize_yolo_layer(&l, w, h);
        }else if(l.type == ROUTE){
            resize_route_layer(&l, net);
      }else if (l.type == SHORTCUT) {
         resize_shortcut_layer(&l, w, h);
      }else if (l.type == UPSAMPLE) {
         resize_upsample_layer(&l, w, h);
        }else if(l.type == REORG){
            resize_reorg_layer(&l, w, h);
        }else if(l.type == AVGPOOL){
@@ -499,6 +504,109 @@
    return out;
}
int num_detections(network *net, float thresh)
{
   int i;
   int s = 0;
   for (i = 0; i < net->n; ++i) {
      layer l = net->layers[i];
      if (l.type == YOLO) {
         s += yolo_num_detections(l, thresh);
      }
      if (l.type == DETECTION || l.type == REGION) {
         s += l.w*l.h*l.n;
      }
   }
   return s;
}
detection *make_network_boxes(network *net, float thresh, int *num)
{
   layer l = net->layers[net->n - 1];
   int i;
   int nboxes = num_detections(net, thresh);
   if (num) *num = nboxes;
   detection *dets = calloc(nboxes, sizeof(detection));
   for (i = 0; i < nboxes; ++i) {
      dets[i].prob = calloc(l.classes, sizeof(float));
      if (l.coords > 4) {
         dets[i].mask = calloc(l.coords - 4, sizeof(float));
      }
   }
   return dets;
}
void custom_get_region_detections(layer l, int w, int h, int net_w, int net_h, float thresh, int *map, float hier, int relative, detection *dets, int letter)
{
   box *boxes = calloc(l.w*l.h*l.n, sizeof(box));
   float **probs = calloc(l.w*l.h*l.n, sizeof(float *));
   int i, j;
   for (j = 0; j < l.w*l.h*l.n; ++j) probs[j] = calloc(l.classes, sizeof(float *));
   get_region_boxes(l, w, h, thresh, probs, boxes, 0, map);
   for (j = 0; j < l.w*l.h*l.n; ++j) {
      dets[j].classes = l.classes;
      dets[j].bbox = boxes[j];
      dets[j].objectness = 1;
      for (i = 0; i < l.classes; ++i) {
         dets[j].prob[i] = probs[j][i];
      }
   }
   free(boxes);
   free_ptrs((void **)probs, l.w*l.h*l.n);
}
void fill_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, detection *dets, int letter)
{
   int j;
   for (j = 0; j < net->n; ++j) {
      layer l = net->layers[j];
      if (l.type == YOLO) {
         int count = get_yolo_detections(l, w, h, net->w, net->h, thresh, map, relative, dets, letter);
         dets += count;
      }
      if (l.type == REGION) {
         custom_get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets, letter);
         //get_region_detections(l, w, h, net->w, net->h, thresh, map, hier, relative, dets);
         dets += l.w*l.h*l.n;
      }
      if (l.type == DETECTION) {
         get_detection_detections(l, w, h, thresh, dets);
         dets += l.w*l.h*l.n;
      }
   }
}
detection *get_network_boxes(network *net, int w, int h, float thresh, float hier, int *map, int relative, int *num, int letter)
{
   detection *dets = make_network_boxes(net, thresh, num);
   fill_network_boxes(net, w, h, thresh, hier, map, relative, dets, letter);
   return dets;
}
void free_detections(detection *dets, int n)
{
   int i;
   for (i = 0; i < n; ++i) {
      free(dets[i].prob);
      if (dets[i].mask) free(dets[i].mask);
   }
   free(dets);
}
float *network_predict_image(network *net, image im)
{
   image imr = letterbox_image(im, net->w, net->h);
   set_batch_network(net, 1);
   float *p = network_predict(*net, imr.data);
   free_image(imr);
   return p;
}
int network_width(network *net) { return net->w; }
int network_height(network *net) { return net->h; }
matrix network_predict_data_multi(network net, data test, int n)
{
    int i,j,b,m;