Joseph Redmon
2015-07-08 42d7438879c815494e623e20daf42cae3eeaff8a
src/detection.c
@@ -3,22 +3,24 @@
#include "cost_layer.h"
#include "utils.h"
#include "parser.h"
#include "box.h"
char *class_names[] = {"aeroplane", "bicycle", "bird", "boat", "bottle", "bus", "car", "cat", "chair", "cow", "diningtable", "dog", "horse", "motorbike", "person", "pottedplant", "sheep", "sofa", "train", "tvmonitor"};
void draw_detection(image im, float *box, int side, int bg, char *label)
void draw_detection(image im, float *box, int side, char *label)
{
    int classes = 20;
    int elems = 4+classes+bg;
    int elems = 4+classes;
    int j;
    int r, c;
    for(r = 0; r < side; ++r){
        for(c = 0; c < side; ++c){
            j = (r*side + c) * elems + bg;
            j = (r*side + c) * elems;
            int class = max_index(box+j, classes);
            if(box[j+class] > .2){
            if(box[j+class] > 0.2){
                int width = box[j+class]*5 + 1;
                printf("%f %s\n", box[j+class], class_names[class]);
                float red = get_color(0,class,classes);
                float green = get_color(1,class,classes);
@@ -38,9 +40,7 @@
                int right = (x+w/2)*im.w;
                int top   = (y-h/2)*im.h;
                int bot   = (y+h/2)*im.h;
                draw_box(im, left, top, right, bot, red, green, blue);
                draw_box(im, left+1, top+1, right+1, bot+1, red, green, blue);
                draw_box(im, left-1, top-1, right-1, bot-1, red, green, blue);
                draw_box_width(im, left, top, right, bot, width, red, green, blue);
            }
        }
    }
@@ -67,6 +67,7 @@
    int classes = layer.classes;
    int background = (layer.background || layer.objectness);
    printf("%d\n", background);
    int side = sqrt(get_detection_layer_locations(layer));
    char **paths;
@@ -77,9 +78,9 @@
        //plist = get_paths("/home/pjreddie/data/voc/no_2012_val.txt");
        //plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt");
        //plist = get_paths("/home/pjreddie/data/voc/val_2012.txt");
        plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt");
        //plist = get_paths("/home/pjreddie/data/voc/no_2007_test.txt");
        //plist = get_paths("/home/pjreddie/data/coco/trainval.txt");
        //plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt");
        plist = get_paths("/home/pjreddie/data/voc/all2007-2012.txt");
    }
    paths = (char **)list_to_array(plist);
    pthread_t load_thread = load_data_detection_thread(imgs, paths, plist->size, classes, net.w, net.h, side, side, background, &buffer);
@@ -118,32 +119,67 @@
    }
}
void predict_detections(network net, data d, float threshold, int offset, int classes, int objectness, int background, int num_boxes, int per_box)
void convert_detections(float *predictions, int classes, int objectness, int background, int num_boxes, int w, int h, float thresh, float **probs, box *boxes)
{
    matrix pred = network_predict_data(net, d);
    int j, k, class;
    for(j = 0; j < pred.rows; ++j){
        for(k = 0; k < pred.cols; k += per_box){
            float scale = 1.;
            int index = k/per_box;
            int row = index / num_boxes;
            int col = index % num_boxes;
            if (objectness) scale = 1.-pred.vals[j][k];
            for (class = 0; class < classes; ++class){
                int ci = k+classes+(background || objectness);
                float x = (pred.vals[j][ci + 0] + col)/num_boxes;
                float y = (pred.vals[j][ci + 1] + row)/num_boxes;
                float w = pred.vals[j][ci + 2]; // distance_from_edge(row, num_boxes);
                float h = pred.vals[j][ci + 3]; // distance_from_edge(col, num_boxes);
                w = pow(w, 2);
                h = pow(h, 2);
                float prob = scale*pred.vals[j][k+class+(background || objectness)];
                if(prob < threshold) continue;
                printf("%d %d %f %f %f %f %f\n", offset +  j, class, prob, x, y, w, h);
    int i,j;
    int per_box = 4+classes+(background || objectness);
    for (i = 0; i < num_boxes*num_boxes; ++i){
        float scale = 1;
        if(objectness) scale = 1-predictions[i*per_box];
        int offset = i*per_box+(background||objectness);
        for(j = 0; j < classes; ++j){
            float prob = scale*predictions[offset+j];
            probs[i][j] = (prob > thresh) ? prob : 0;
        }
        int row = i / num_boxes;
        int col = i % num_boxes;
        offset += classes;
        boxes[i].x = (predictions[offset + 0] + col) / num_boxes * w;
        boxes[i].y = (predictions[offset + 1] + row) / num_boxes * h;
        boxes[i].w = pow(predictions[offset + 2], 2) * w;
        boxes[i].h = pow(predictions[offset + 3], 2) * h;
    }
}
void do_nms(box *boxes, float **probs, int num_boxes, int classes, float thresh)
{
    int i, j, k;
    for(i = 0; i < num_boxes*num_boxes; ++i){
        int any = 0;
        for(k = 0; k < classes; ++k) any = any || (probs[i][k] > 0);
        if(!any) {
            continue;
        }
        for(j = i+1; j < num_boxes*num_boxes; ++j){
            if (box_iou(boxes[i], boxes[j]) > thresh){
                for(k = 0; k < classes; ++k){
                    if (probs[i][k] < probs[j][k]) probs[i][k] = 0;
                    else probs[j][k] = 0;
                }
            }
        }
    }
    free_matrix(pred);
}
void print_detections(FILE **fps, char *id, box *boxes, float **probs, int num_boxes, int classes, int w, int h)
{
    int i, j;
    for(i = 0; i < num_boxes*num_boxes; ++i){
        float xmin = boxes[i].x - boxes[i].w/2.;
        float xmax = boxes[i].x + boxes[i].w/2.;
        float ymin = boxes[i].y - boxes[i].h/2.;
        float ymax = boxes[i].y + boxes[i].h/2.;
        if (xmin < 0) xmin = 0;
        if (ymin < 0) ymin = 0;
        if (xmax > w) xmax = w;
        if (ymax > h) ymax = h;
        for(j = 0; j < classes; ++j){
            if (probs[i][j]) fprintf(fps[j], "%s %f %f %f %f %f\n", id, probs[i][j],
                    xmin, ymin, xmax, ymax);
        }
    }
}
void validate_detection(char *cfgfile, char *weightfile)
@@ -152,11 +188,13 @@
    if(weightfile){
        load_weights(&net, weightfile);
    }
    set_batch_network(&net, 1);
    detection_layer layer = get_network_detection_layer(net);
    fprintf(stderr, "Learning Rate: %g, Momentum: %g, Decay: %g\n", net.learning_rate, net.momentum, net.decay);
    srand(time(0));
    list *plist = get_paths("/home/pjreddie/data/voc/test.txt");
    char *base = "results/comp4_det_test_";
    list *plist = get_paths("data/voc.2012test.list");
    char **paths = (char **)list_to_array(plist);
    int classes = layer.classes;
@@ -164,75 +202,100 @@
    int background = layer.background;
    int num_boxes = sqrt(get_detection_layer_locations(layer));
    int per_box = 4+classes+(background || objectness);
    int num_output = num_boxes*num_boxes*per_box;
    int j;
    FILE **fps = calloc(classes, sizeof(FILE *));
    for(j = 0; j < classes; ++j){
        char buff[1024];
        snprintf(buff, 1024, "%s%s.txt", base, class_names[j]);
        fps[j] = fopen(buff, "w");
    }
    box *boxes = calloc(num_boxes*num_boxes, sizeof(box));
    float **probs = calloc(num_boxes*num_boxes, sizeof(float *));
    for(j = 0; j < num_boxes*num_boxes; ++j) probs[j] = calloc(classes, sizeof(float *));
    int m = plist->size;
    int i = 0;
    int splits = 100;
    int nthreads = 4;
    int i=0;
    int t;
    data *val = calloc(nthreads, sizeof(data));
    data *buf = calloc(nthreads, sizeof(data));
    pthread_t *thr = calloc(nthreads, sizeof(data));
    time_t start = time(0);
    float thresh = .001;
    int nms = 1;
    float iou_thresh = .5;
    int nthreads = 8;
    image *val = calloc(nthreads, sizeof(image));
    image *val_resized = calloc(nthreads, sizeof(image));
    image *buf = calloc(nthreads, sizeof(image));
    image *buf_resized = calloc(nthreads, sizeof(image));
    pthread_t *thr = calloc(nthreads, sizeof(pthread_t));
    for(t = 0; t < nthreads; ++t){
        int num = (i+1+t)*m/splits - (i+t)*m/splits;
        char **part = paths+((i+t)*m/splits);
        thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t]));
        thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
    }
    for(i = nthreads; i <= splits; i += nthreads){
        for(t = 0; t < nthreads; ++t){
    time_t start = time(0);
    for(i = nthreads; i < m+nthreads; i += nthreads){
        fprintf(stderr, "%d\n", i);
        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
            pthread_join(thr[t], 0);
            val[t] = buf[t];
            val_resized[t] = buf_resized[t];
        }
        for(t = 0; t < nthreads && i < splits; ++t){
            int num = (i+1+t)*m/splits - (i+t)*m/splits;
            char **part = paths+((i+t)*m/splits);
            thr[t] = load_data_thread(part, num, 0, 0, num_output, net.w, net.h, &(buf[t]));
        for(t = 0; t < nthreads && i+t < m; ++t){
            thr[t] = load_image_thread(paths[i+t], &buf[t], &buf_resized[t], net.w, net.h);
        }
        fprintf(stderr, "%d\n", i);
        for(t = 0; t < nthreads; ++t){
            predict_detections(net, val[t], .001, (i-nthreads+t)*m/splits, classes, objectness, background, num_boxes, per_box);
            free_data(val[t]);
        for(t = 0; t < nthreads && i+t-nthreads < m; ++t){
            char *path = paths[i+t-nthreads];
            char *id = basecfg(path);
            float *X = val_resized[t].data;
            float *predictions = network_predict(net, X);
            int w = val[t].w;
            int h = val[t].h;
            convert_detections(predictions, classes, objectness, background, num_boxes, w, h, thresh, probs, boxes);
            if (nms) do_nms(boxes, probs, num_boxes, classes, iou_thresh);
            print_detections(fps, id, boxes, probs, num_boxes, classes, w, h);
            free(id);
            free_image(val[t]);
            free_image(val_resized[t]);
        }
    }
    fprintf(stderr, "Total Detection Time: %f Seconds\n", (double)(time(0) - start));
}
void test_detection(char *cfgfile, char *weightfile)
void test_detection(char *cfgfile, char *weightfile, char *filename)
{
    network net = parse_network_cfg(cfgfile);
    if(weightfile){
        load_weights(&net, weightfile);
    }
    detection_layer layer = get_network_detection_layer(net);
    if (!layer.joint) fprintf(stderr, "Detection layer should use joint prediction to draw correctly.\n");
    int im_size = 448;
    set_batch_network(&net, 1);
    srand(2222222);
    clock_t time;
    char filename[256];
    char input[256];
    while(1){
        fgets(filename, 256, stdin);
        strtok(filename, "\n");
        image im = load_image_color(filename,0,0);
        if(filename){
            strncpy(input, filename, 256);
        } else {
            printf("Enter Image Path: ");
            fflush(stdout);
            fgets(input, 256, stdin);
            strtok(input, "\n");
        }
        image im = load_image_color(input,0,0);
        image sized = resize_image(im, im_size, im_size);
        printf("%d %d %d\n", im.h, im.w, im.c);
        float *X = sized.data;
        time=clock();
        float *predictions = network_predict(net, X);
        printf("%s: Predicted in %f seconds.\n", filename, sec(clock()-time));
        draw_detection(im, predictions, 7, layer.background || layer.objectness, "predictions");
        printf("%s: Predicted in %f seconds.\n", input, sec(clock()-time));
        draw_detection(im, predictions, 7, "predictions");
        free_image(im);
        free_image(sized);
        #ifdef OPENCV
#ifdef OPENCV
        cvWaitKey(0);
        #endif
        cvDestroyAllWindows();
#endif
        if (filename) break;
    }
}
@@ -245,7 +308,8 @@
    char *cfg = argv[3];
    char *weights = (argc > 4) ? argv[4] : 0;
    if(0==strcmp(argv[2], "test")) test_detection(cfg, weights);
    char *filename = (argc > 5) ? argv[5]: 0;
    if(0==strcmp(argv[2], "test")) test_detection(cfg, weights, filename);
    else if(0==strcmp(argv[2], "train")) train_detection(cfg, weights);
    else if(0==strcmp(argv[2], "valid")) validate_detection(cfg, weights);
}