Joseph Redmon
2014-02-18 43424a343ac6db51e0e5404ec5910dbded31c693
src/convolutional_layer.c
@@ -3,28 +3,37 @@
#include "mini_blas.h"
#include <stdio.h>
int convolutional_out_height(convolutional_layer layer)
{
    return (layer.h-layer.size)/layer.stride + 1;
}
int convolutional_out_width(convolutional_layer layer)
{
    return (layer.w-layer.size)/layer.stride + 1;
}
image get_convolutional_image(convolutional_layer layer)
{
    int h,w,c;
    h = layer.out_h;
    w = layer.out_w;
    h = convolutional_out_height(layer);
    w = convolutional_out_width(layer);
    c = layer.n;
    return double_to_image(h,w,c,layer.output);
    return float_to_image(h,w,c,layer.output);
}
image get_convolutional_delta(convolutional_layer layer)
{
    int h,w,c;
    h = layer.out_h;
    w = layer.out_w;
    h = convolutional_out_height(layer);
    w = convolutional_out_width(layer);
    c = layer.n;
    return double_to_image(h,w,c,layer.delta);
    return float_to_image(h,w,c,layer.delta);
}
convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation)
{
    int i;
    int out_h,out_w;
    size = 2*(size/2)+1; //HA! And you thought you'd use an even sized filter...
    convolutional_layer *layer = calloc(1, sizeof(convolutional_layer));
    layer->h = h;
@@ -34,28 +43,26 @@
    layer->stride = stride;
    layer->size = size;
    layer->filters = calloc(c*n*size*size, sizeof(double));
    layer->filter_updates = calloc(c*n*size*size, sizeof(double));
    layer->filter_momentum = calloc(c*n*size*size, sizeof(double));
    layer->filters = calloc(c*n*size*size, sizeof(float));
    layer->filter_updates = calloc(c*n*size*size, sizeof(float));
    layer->filter_momentum = calloc(c*n*size*size, sizeof(float));
    layer->biases = calloc(n, sizeof(double));
    layer->bias_updates = calloc(n, sizeof(double));
    layer->bias_momentum = calloc(n, sizeof(double));
    double scale = 2./(size*size);
    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = rand_normal()*scale;
    layer->biases = calloc(n, sizeof(float));
    layer->bias_updates = calloc(n, sizeof(float));
    layer->bias_momentum = calloc(n, sizeof(float));
    float scale = 1./(size*size*c);
    for(i = 0; i < c*n*size*size; ++i) layer->filters[i] = scale*(rand_uniform());
    for(i = 0; i < n; ++i){
        //layer->biases[i] = rand_normal()*scale + scale;
        layer->biases[i] = 0;
    }
    out_h = (h-size)/stride + 1;
    out_w = (w-size)/stride + 1;
    int out_h = (h-size)/stride + 1;
    int out_w = (w-size)/stride + 1;
    layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(double));
    layer->output = calloc(out_h * out_w * n, sizeof(double));
    layer->delta  = calloc(out_h * out_w * n, sizeof(double));
    layer->col_image = calloc(out_h*out_w*size*size*c, sizeof(float));
    layer->output = calloc(out_h * out_w * n, sizeof(float));
    layer->delta  = calloc(out_h * out_w * n, sizeof(float));
    layer->activation = activation;
    layer->out_h = out_h;
    layer->out_w = out_w;
    fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n);
    srand(0);
@@ -63,28 +70,37 @@
    return layer;
}
void forward_convolutional_layer(const convolutional_layer layer, double *in)
void forward_convolutional_layer(const convolutional_layer layer, float *in)
{
    int i;
    int m = layer.n;
    int k = layer.size*layer.size*layer.c;
    int n = ((layer.h-layer.size)/layer.stride + 1)*
            ((layer.w-layer.size)/layer.stride + 1);
    memset(layer.output, 0, m*n*sizeof(double));
    memset(layer.output, 0, m*n*sizeof(float));
    double *a = layer.filters;
    double *b = layer.col_image;
    double *c = layer.output;
    float *a = layer.filters;
    float *b = layer.col_image;
    float *c = layer.output;
    im2col_cpu(in,  layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, b);
    gemm(0,0,m,n,k,1,a,k,b,n,1,c,n);
    for(i = 0; i < m*n; ++i){
        layer.output[i] = activate(layer.output[i], layer.activation);
    }
    //for(i = 0; i < m*n; ++i) if(i%(m*n/10+1)==0) printf("%f, ", layer.output[i]); printf("\n");
}
void gradient_delta_convolutional_layer(convolutional_layer layer)
{
    int i;
    for(i = 0; i < layer.out_h*layer.out_w*layer.n; ++i){
    int size = convolutional_out_height(layer)
                *convolutional_out_width(layer)
                *layer.n;
    for(i = 0; i < size; ++i){
        layer.delta[i] *= gradient(layer.output[i], layer.activation);
    }
}
@@ -92,9 +108,10 @@
void learn_bias_convolutional_layer(convolutional_layer layer)
{
    int i,j;
    int size = layer.out_h*layer.out_w;
    int size = convolutional_out_height(layer)
                *convolutional_out_width(layer);
    for(i = 0; i < layer.n; ++i){
        double sum = 0;
        float sum = 0;
        for(j = 0; j < size; ++j){
            sum += layer.delta[j+i*size];
        }
@@ -111,14 +128,33 @@
    int k = ((layer.h-layer.size)/layer.stride + 1)*
            ((layer.w-layer.size)/layer.stride + 1);
    double *a = layer.delta;
    double *b = layer.col_image;
    double *c = layer.filter_updates;
    float *a = layer.delta;
    float *b = layer.col_image;
    float *c = layer.filter_updates;
    gemm(0,1,m,n,k,1,a,k,b,k,1,c,n);
}
void update_convolutional_layer(convolutional_layer layer, double step, double momentum, double decay)
void backward_convolutional_layer(convolutional_layer layer, float *delta)
{
    int m = layer.size*layer.size*layer.c;
    int k = layer.n;
    int n = ((layer.h-layer.size)/layer.stride + 1)*
            ((layer.w-layer.size)/layer.stride + 1);
    float *a = layer.filters;
    float *b = layer.delta;
    float *c = layer.col_image;
    memset(c, 0, m*n*sizeof(float));
    gemm(1,0,m,n,k,1,a,m,b,n,1,c,n);
    memset(delta, 0, layer.h*layer.w*layer.c*sizeof(float));
    col2im_cpu(c,  layer.c,  layer.h,  layer.w,  layer.size,  layer.stride, delta);
}
void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay)
{
    int i;
    int size = layer.size*layer.size*layer.c*layer.n;
@@ -133,9 +169,9 @@
}
/*
void backward_convolutional_layer2(convolutional_layer layer, double *input, double *delta)
void backward_convolutional_layer2(convolutional_layer layer, float *input, float *delta)
{
    image in_delta = double_to_image(layer.h, layer.w, layer.c, delta);
    image in_delta = float_to_image(layer.h, layer.w, layer.c, delta);
    image out_delta = get_convolutional_delta(layer);
    int i,j;
    for(i = 0; i < layer.n; ++i){
@@ -156,10 +192,10 @@
}
void learn_convolutional_layer(convolutional_layer layer, double *input)
void learn_convolutional_layer(convolutional_layer layer, float *input)
{
    int i;
    image in_image = double_to_image(layer.h, layer.w, layer.c, input);
    image in_image = float_to_image(layer.h, layer.w, layer.c, input);
    image out_delta = get_convolutional_delta(layer);
    gradient_delta_convolutional_layer(layer);
    for(i = 0; i < layer.n; ++i){
@@ -168,7 +204,7 @@
    }
}
void update_convolutional_layer(convolutional_layer layer, double step, double momentum, double decay)
void update_convolutional_layer(convolutional_layer layer, float step, float momentum, float decay)
{
    int i,j;
    for(i = 0; i < layer.n; ++i){
@@ -190,21 +226,28 @@
void test_convolutional_layer()
{
    convolutional_layer l = *make_convolutional_layer(4,4,1,1,3,1,LINEAR);
    double input[] =    {1,2,3,4,
    float input[] =    {1,2,3,4,
                        5,6,7,8,
                        9,10,11,12,
                        13,14,15,16};
    double filter[] =   {.5, 0, .3,
    float filter[] =   {.5, 0, .3,
                        0  , 1,  0,
                        .2 , 0,  1};
    double delta[] =    {1, 2,
    float delta[] =    {1, 2,
                        3,  4};
    float in_delta[] = {.5,1,.3,.6,
                        5,6,7,8,
                        9,10,11,12,
                        13,14,15,16};
    l.filters = filter;
    forward_convolutional_layer(l, input);
    l.delta = delta;
    learn_convolutional_layer(l);
    image filter_updates = double_to_image(3,3,1,l.filter_updates);
    image filter_updates = float_to_image(3,3,1,l.filter_updates);
    print_image(filter_updates);
    printf("Delta:\n");
    backward_convolutional_layer(l, in_delta);
    pm(4,4,in_delta);
}
image get_convolutional_filter(convolutional_layer layer, int i)
@@ -212,7 +255,7 @@
    int h = layer.size;
    int w = layer.size;
    int c = layer.c;
    return double_to_image(h,w,c,layer.filters+i*h*w*c);
    return float_to_image(h,w,c,layer.filters+i*h*w*c);
}
void visualize_convolutional_layer(convolutional_layer layer, char *window)