| | |
| | | softmax_layer make_softmax_layer(int batch, int inputs, int groups) |
| | | { |
| | | assert(inputs%groups == 0); |
| | | fprintf(stderr, "Softmax Layer: %d inputs\n", inputs); |
| | | fprintf(stderr, "softmax %4d\n", inputs); |
| | | softmax_layer l = {0}; |
| | | l.type = SOFTMAX; |
| | | l.batch = batch; |
| | |
| | | return l; |
| | | } |
| | | |
| | | void softmax_tree(float *input, int batch, int inputs, float temp, tree *hierarchy, float *output) |
| | | { |
| | | int b; |
| | | for(b = 0; b < batch; ++b){ |
| | | int i; |
| | | int count = 0; |
| | | for(i = 0; i < hierarchy->groups; ++i){ |
| | | int group_size = hierarchy->group_size[i]; |
| | | softmax(input+b*inputs + count, group_size, temp, output+b*inputs + count); |
| | | count += group_size; |
| | | } |
| | | } |
| | | } |
| | | |
| | | void forward_softmax_layer(const softmax_layer l, network_state state) |
| | | { |
| | | int b; |
| | | int inputs = l.inputs / l.groups; |
| | | int batch = l.batch * l.groups; |
| | | if(l.softmax_tree){ |
| | | for(b = 0; b < batch; ++b){ |
| | | int i; |
| | | int count = 0; |
| | | for(i = 0; i < l.softmax_tree->groups; ++i){ |
| | | int group_size = l.softmax_tree->group_size[i]; |
| | | softmax(state.input+b*inputs + count, group_size, l.temperature, l.output+b*inputs + count); |
| | | count += group_size; |
| | | } |
| | | } |
| | | softmax_tree(state.input, batch, inputs, l.temperature, l.softmax_tree, l.output); |
| | | } else { |
| | | for(b = 0; b < batch; ++b){ |
| | | softmax(state.input+b*inputs, inputs, l.temperature, l.output+b*inputs); |
| | |
| | | { |
| | | int inputs = l.inputs / l.groups; |
| | | int batch = l.batch * l.groups; |
| | | int b; |
| | | if(l.softmax_tree){ |
| | | if(0){ |
| | | float *buff = calloc(inputs * batch, sizeof(float)); |
| | | cuda_pull_array(state.input, buff, batch * inputs); |
| | | state.input = buff; |
| | | forward_softmax_layer(l, state); |
| | | cuda_push_array(l.output_gpu, l.output, batch*inputs); |
| | | free(buff); |
| | | } else { |
| | | int i; |
| | | const int nstreams = 32; |
| | | cudaStream_t streams[nstreams]; |
| | | for (i = 0; i < nstreams; ++i) { |
| | | cudaStreamCreate(&streams[i]); |
| | | } |
| | | for (b = 0; b < batch; ++b) { |
| | | int i; |
| | | int count = 0; |
| | | for (i = 0; i < l.softmax_tree->groups; ++i) { |
| | | int group_size = l.softmax_tree->group_size[i]; |
| | | softmax_gpu(state.input+b*inputs + count, group_size, 1, l.temperature, l.output_gpu+b*inputs + count, streams[(b*l.softmax_tree->groups + i) % nstreams]); |
| | | count += group_size; |
| | | } |
| | | } |
| | | for(i = 0; i < nstreams; ++i){ |
| | | cudaStreamDestroy(streams[i]); |
| | | } |
| | | int i; |
| | | int count = 0; |
| | | for (i = 0; i < l.softmax_tree->groups; ++i) { |
| | | int group_size = l.softmax_tree->group_size[i]; |
| | | softmax_gpu(state.input+count, group_size, inputs, batch, l.temperature, l.output_gpu + count); |
| | | count += group_size; |
| | | } |
| | | } else { |
| | | softmax_gpu(state.input, inputs, batch, l.temperature, l.output_gpu, 0); |
| | | softmax_gpu(state.input, inputs, inputs, batch, l.temperature, l.output_gpu); |
| | | } |
| | | } |
| | | |