| | |
| | | l.biases[i] = .5; |
| | | } |
| | | |
| | | l.forward = forward_region_layer; |
| | | l.backward = backward_region_layer; |
| | | #ifdef GPU |
| | | l.forward_gpu = forward_region_layer_gpu; |
| | | l.backward_gpu = backward_region_layer_gpu; |
| | | l.output_gpu = cuda_make_array(l.output, batch*l.outputs); |
| | | l.delta_gpu = cuda_make_array(l.delta, batch*l.outputs); |
| | | #endif |
| | |
| | | axpy_cpu(l.batch*l.inputs, 1, l.delta, 1, state.delta, 1); |
| | | } |
| | | |
| | | void get_region_boxes(layer l, int w, int h, float thresh, float **probs, box *boxes, int only_objectness) |
| | | { |
| | | int i,j,n; |
| | | float *predictions = l.output; |
| | | //int per_cell = 5*num+classes; |
| | | for (i = 0; i < l.w*l.h; ++i){ |
| | | int row = i / l.w; |
| | | int col = i % l.w; |
| | | for(n = 0; n < l.n; ++n){ |
| | | int index = i*l.n + n; |
| | | int p_index = index * (l.classes + 5) + 4; |
| | | float scale = predictions[p_index]; |
| | | int box_index = index * (l.classes + 5); |
| | | boxes[index].x = (predictions[box_index + 0] + col + .5) / l.w * w; |
| | | boxes[index].y = (predictions[box_index + 1] + row + .5) / l.h * h; |
| | | if(0){ |
| | | boxes[index].x = (logistic_activate(predictions[box_index + 0]) + col) / l.w * w; |
| | | boxes[index].y = (logistic_activate(predictions[box_index + 1]) + row) / l.h * h; |
| | | } |
| | | boxes[index].w = pow(logistic_activate(predictions[box_index + 2]), (l.sqrt?2:1)) * w; |
| | | boxes[index].h = pow(logistic_activate(predictions[box_index + 3]), (l.sqrt?2:1)) * h; |
| | | if(1){ |
| | | boxes[index].x = ((col + .5)/l.w + predictions[box_index + 0] * .5) * w; |
| | | boxes[index].y = ((row + .5)/l.h + predictions[box_index + 1] * .5) * h; |
| | | boxes[index].w = (exp(predictions[box_index + 2]) * .5) * w; |
| | | boxes[index].h = (exp(predictions[box_index + 3]) * .5) * h; |
| | | } |
| | | for(j = 0; j < l.classes; ++j){ |
| | | int class_index = index * (l.classes + 5) + 5; |
| | | float prob = scale*predictions[class_index+j]; |
| | | probs[index][j] = (prob > thresh) ? prob : 0; |
| | | } |
| | | if(only_objectness){ |
| | | probs[index][0] = scale; |
| | | } |
| | | } |
| | | } |
| | | } |
| | | |
| | | #ifdef GPU |
| | | |
| | | void forward_region_layer_gpu(const region_layer l, network_state state) |