| | |
| | | check_error(cudaPeekAtLastError()); |
| | | } |
| | | |
| | | extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, float *in) |
| | | extern "C" void forward_convolutional_layer_gpu(convolutional_layer layer, network_state state) |
| | | { |
| | | clock_t time = clock(); |
| | | int i; |
| | | int m = layer.n; |
| | | int k = layer.size*layer.size*layer.c; |
| | |
| | | convolutional_out_width(layer); |
| | | |
| | | bias_output_gpu(layer.output_gpu, layer.biases_gpu, layer.batch, layer.n, n); |
| | | cudaDeviceSynchronize(); |
| | | printf("bias %f\n", sec(clock() - time)); |
| | | time = clock(); |
| | | |
| | | float imt=0; |
| | | float gemt = 0; |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | im2col_ongpu(in + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu); |
| | | time = clock(); |
| | | im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu); |
| | | cudaDeviceSynchronize(); |
| | | imt += sec(clock()-time); |
| | | time = clock(); |
| | | float * a = layer.filters_gpu; |
| | | float * b = layer.col_image_gpu; |
| | | float * c = layer.output_gpu; |
| | | gemm_ongpu(0,0,m,n,k,1.,a,k,b,n,1.,c+i*m*n,n); |
| | | cudaDeviceSynchronize(); |
| | | gemt += sec(clock()-time); |
| | | time = clock(); |
| | | } |
| | | activate_array_ongpu(layer.output_gpu, m*n*layer.batch, layer.activation); |
| | | cudaDeviceSynchronize(); |
| | | printf("activate %f\n", sec(clock() - time)); |
| | | printf("im2col %f\n", imt); |
| | | printf("gemm %f\n", gemt); |
| | | } |
| | | |
| | | extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, float *in, float *delta_gpu) |
| | | extern "C" void backward_convolutional_layer_gpu(convolutional_layer layer, network_state state) |
| | | { |
| | | float alpha = 1./layer.batch; |
| | | int i; |
| | |
| | | gradient_array_ongpu(layer.output_gpu, m*k*layer.batch, layer.activation, layer.delta_gpu); |
| | | backward_bias_gpu(layer.bias_updates_gpu, layer.delta_gpu, layer.batch, layer.n, k); |
| | | |
| | | if(delta_gpu) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, delta_gpu, 1); |
| | | if(state.delta) scal_ongpu(layer.batch*layer.h*layer.w*layer.c, 0, state.delta, 1); |
| | | |
| | | for(i = 0; i < layer.batch; ++i){ |
| | | float * a = layer.delta_gpu; |
| | | float * b = layer.col_image_gpu; |
| | | float * c = layer.filter_updates_gpu; |
| | | |
| | | im2col_ongpu(in + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu); |
| | | im2col_ongpu(state.input + i*layer.c*layer.h*layer.w, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, layer.col_image_gpu); |
| | | gemm_ongpu(0,1,m,n,k,alpha,a + i*m*k,k,b,k,1,c,n); |
| | | |
| | | if(delta_gpu){ |
| | | if(state.delta){ |
| | | |
| | | float * a = layer.filters_gpu; |
| | | float * b = layer.delta_gpu; |
| | |
| | | |
| | | gemm_ongpu(1,0,n,k,m,1,a,n,b + i*k*m,k,0,c,k); |
| | | |
| | | col2im_ongpu(layer.col_image_gpu, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, delta_gpu + i*layer.c*layer.h*layer.w); |
| | | col2im_ongpu(layer.col_image_gpu, layer.c, layer.h, layer.w, layer.size, layer.stride, layer.pad, state.delta + i*layer.c*layer.h*layer.w); |
| | | } |
| | | } |
| | | } |
| | |
| | | cuda_push_array(layer.bias_updates_gpu, layer.bias_updates, layer.n); |
| | | } |
| | | |
| | | extern "C" void update_convolutional_layer_gpu(convolutional_layer layer) |
| | | extern "C" void update_convolutional_layer_gpu(convolutional_layer layer, float learning_rate, float momentum, float decay) |
| | | { |
| | | int size = layer.size*layer.size*layer.c*layer.n; |
| | | |
| | | /* |
| | | cuda_pull_array(layer.filter_updates_gpu, layer.filter_updates, size); |
| | | cuda_pull_array(layer.filters_gpu, layer.filters, size); |
| | | printf("Filter: %f updates: %f\n", mag_array(layer.filters, size), layer.learning_rate*mag_array(layer.filter_updates, size)); |
| | | */ |
| | | axpy_ongpu(layer.n, learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); |
| | | scal_ongpu(layer.n, momentum, layer.bias_updates_gpu, 1); |
| | | |
| | | axpy_ongpu(layer.n, layer.learning_rate, layer.bias_updates_gpu, 1, layer.biases_gpu, 1); |
| | | scal_ongpu(layer.n,layer.momentum, layer.bias_updates_gpu, 1); |
| | | |
| | | axpy_ongpu(size, -layer.decay, layer.filters_gpu, 1, layer.filter_updates_gpu, 1); |
| | | axpy_ongpu(size, layer.learning_rate, layer.filter_updates_gpu, 1, layer.filters_gpu, 1); |
| | | scal_ongpu(size, layer.momentum, layer.filter_updates_gpu, 1); |
| | | //pull_convolutional_layer(layer); |
| | | axpy_ongpu(size, -decay, layer.filters_gpu, 1, layer.filter_updates_gpu, 1); |
| | | axpy_ongpu(size, learning_rate, layer.filter_updates_gpu, 1, layer.filters_gpu, 1); |
| | | scal_ongpu(size, momentum, layer.filter_updates_gpu, 1); |
| | | } |
| | | |