| | |
| | | #include "convolutional_layer.h" |
| | | #include "utils.h" |
| | | #include <stdio.h> |
| | | |
| | | double convolution_activation(double x) |
| | | image get_convolutional_image(convolutional_layer layer) |
| | | { |
| | | return x*(x>0); |
| | | int h,w,c; |
| | | if(layer.edge){ |
| | | h = (layer.h-1)/layer.stride + 1; |
| | | w = (layer.w-1)/layer.stride + 1; |
| | | }else{ |
| | | h = (layer.h - layer.size)/layer.stride+1; |
| | | w = (layer.h - layer.size)/layer.stride+1; |
| | | } |
| | | c = layer.n; |
| | | return double_to_image(h,w,c,layer.output); |
| | | } |
| | | |
| | | double convolution_gradient(double x) |
| | | image get_convolutional_delta(convolutional_layer layer) |
| | | { |
| | | return (x>=0); |
| | | int h,w,c; |
| | | if(layer.edge){ |
| | | h = (layer.h-1)/layer.stride + 1; |
| | | w = (layer.w-1)/layer.stride + 1; |
| | | }else{ |
| | | h = (layer.h - layer.size)/layer.stride+1; |
| | | w = (layer.h - layer.size)/layer.stride+1; |
| | | } |
| | | c = layer.n; |
| | | return double_to_image(h,w,c,layer.delta); |
| | | } |
| | | |
| | | convolutional_layer make_convolutional_layer(int h, int w, int c, int n, int size, int stride) |
| | | convolutional_layer *make_convolutional_layer(int h, int w, int c, int n, int size, int stride, ACTIVATION activation) |
| | | { |
| | | int i; |
| | | convolutional_layer layer; |
| | | layer.n = n; |
| | | layer.stride = stride; |
| | | layer.kernels = calloc(n, sizeof(image)); |
| | | layer.kernel_updates = calloc(n, sizeof(image)); |
| | | int out_h,out_w; |
| | | convolutional_layer *layer = calloc(1, sizeof(convolutional_layer)); |
| | | layer->h = h; |
| | | layer->w = w; |
| | | layer->c = c; |
| | | layer->n = n; |
| | | layer->edge = 1; |
| | | layer->stride = stride; |
| | | layer->kernels = calloc(n, sizeof(image)); |
| | | layer->kernel_updates = calloc(n, sizeof(image)); |
| | | layer->kernel_momentum = calloc(n, sizeof(image)); |
| | | layer->biases = calloc(n, sizeof(double)); |
| | | layer->bias_updates = calloc(n, sizeof(double)); |
| | | layer->bias_momentum = calloc(n, sizeof(double)); |
| | | double scale = 2./(size*size); |
| | | for(i = 0; i < n; ++i){ |
| | | layer.kernels[i] = make_random_kernel(size, c); |
| | | layer.kernel_updates[i] = make_random_kernel(size, c); |
| | | //layer->biases[i] = rand_normal()*scale + scale; |
| | | layer->biases[i] = 0; |
| | | layer->kernels[i] = make_random_kernel(size, c, scale); |
| | | layer->kernel_updates[i] = make_random_kernel(size, c, 0); |
| | | layer->kernel_momentum[i] = make_random_kernel(size, c, 0); |
| | | } |
| | | layer.output = make_image((h-1)/stride+1, (w-1)/stride+1, n); |
| | | layer.upsampled = make_image(h,w,n); |
| | | layer->size = 2*(size/2)+1; |
| | | if(layer->edge){ |
| | | out_h = (layer->h-1)/layer->stride + 1; |
| | | out_w = (layer->w-1)/layer->stride + 1; |
| | | }else{ |
| | | out_h = (layer->h - layer->size)/layer->stride+1; |
| | | out_w = (layer->h - layer->size)/layer->stride+1; |
| | | } |
| | | fprintf(stderr, "Convolutional Layer: %d x %d x %d image, %d filters -> %d x %d x %d image\n", h,w,c,n, out_h, out_w, n); |
| | | layer->output = calloc(out_h * out_w * n, sizeof(double)); |
| | | layer->delta = calloc(out_h * out_w * n, sizeof(double)); |
| | | layer->upsampled = make_image(h,w,n); |
| | | layer->activation = activation; |
| | | |
| | | return layer; |
| | | } |
| | | |
| | | void run_convolutional_layer(const image input, const convolutional_layer layer) |
| | | void forward_convolutional_layer(const convolutional_layer layer, double *in) |
| | | { |
| | | int i; |
| | | image input = double_to_image(layer.h, layer.w, layer.c, in); |
| | | image output = get_convolutional_image(layer); |
| | | int i,j; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | convolve(input, layer.kernels[i], layer.stride, i, layer.output); |
| | | convolve(input, layer.kernels[i], layer.stride, i, output, layer.edge); |
| | | } |
| | | for(i = 0; i < input.h*input.w*input.c; ++i){ |
| | | input.data[i] = convolution_activation(input.data[i]); |
| | | for(i = 0; i < output.c; ++i){ |
| | | for(j = 0; j < output.h*output.w; ++j){ |
| | | int index = i*output.h*output.w + j; |
| | | output.data[index] += layer.biases[i]; |
| | | output.data[index] = activate(output.data[index], layer.activation); |
| | | } |
| | | } |
| | | } |
| | | |
| | | void backpropagate_layer(image input, convolutional_layer layer) |
| | | void backward_convolutional_layer(convolutional_layer layer, double *input, double *delta) |
| | | { |
| | | int i; |
| | | zero_image(input); |
| | | |
| | | image in_delta = double_to_image(layer.h, layer.w, layer.c, delta); |
| | | image out_delta = get_convolutional_delta(layer); |
| | | zero_image(in_delta); |
| | | |
| | | for(i = 0; i < layer.n; ++i){ |
| | | back_convolve(input, layer.kernels[i], layer.stride, i, layer.output); |
| | | back_convolve(in_delta, layer.kernels[i], layer.stride, i, out_delta, layer.edge); |
| | | } |
| | | } |
| | | |
| | | void backpropagate_layer_convolve(image input, convolutional_layer layer) |
| | | void backward_convolutional_layer2(convolutional_layer layer, double *input, double *delta) |
| | | { |
| | | image in_delta = double_to_image(layer.h, layer.w, layer.c, delta); |
| | | image out_delta = get_convolutional_delta(layer); |
| | | int i,j; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | rotate_image(layer.kernels[i]); |
| | | } |
| | | |
| | | zero_image(input); |
| | | upsample_image(layer.output, layer.stride, layer.upsampled); |
| | | for(j = 0; j < input.c; ++j){ |
| | | zero_image(in_delta); |
| | | upsample_image(out_delta, layer.stride, layer.upsampled); |
| | | for(j = 0; j < in_delta.c; ++j){ |
| | | for(i = 0; i < layer.n; ++i){ |
| | | two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, input, j); |
| | | two_d_convolve(layer.upsampled, i, layer.kernels[i], j, 1, in_delta, j, layer.edge); |
| | | } |
| | | } |
| | | |
| | |
| | | } |
| | | } |
| | | |
| | | void error_convolutional_layer(image input, convolutional_layer layer) |
| | | void gradient_delta_convolutional_layer(convolutional_layer layer) |
| | | { |
| | | int i; |
| | | image out_delta = get_convolutional_delta(layer); |
| | | image out_image = get_convolutional_image(layer); |
| | | for(i = 0; i < out_image.h*out_image.w*out_image.c; ++i){ |
| | | out_delta.data[i] *= gradient(out_image.data[i], layer.activation); |
| | | } |
| | | } |
| | | |
| | | void learn_convolutional_layer(convolutional_layer layer, double *input) |
| | | { |
| | | int i; |
| | | image in_image = double_to_image(layer.h, layer.w, layer.c, input); |
| | | image out_delta = get_convolutional_delta(layer); |
| | | gradient_delta_convolutional_layer(layer); |
| | | for(i = 0; i < layer.n; ++i){ |
| | | kernel_update(input, layer.kernel_updates[i], layer.stride, i, layer.output); |
| | | kernel_update(in_image, layer.kernel_updates[i], layer.stride, i, out_delta, layer.edge); |
| | | layer.bias_updates[i] += avg_image_layer(out_delta, i); |
| | | } |
| | | image old_input = copy_image(input); |
| | | zero_image(input); |
| | | } |
| | | |
| | | void update_convolutional_layer(convolutional_layer layer, double step, double momentum, double decay) |
| | | { |
| | | int i,j; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | back_convolve(input, layer.kernels[i], layer.stride, i, layer.output); |
| | | layer.bias_momentum[i] = step*(layer.bias_updates[i]) |
| | | + momentum*layer.bias_momentum[i]; |
| | | layer.biases[i] += layer.bias_momentum[i]; |
| | | layer.bias_updates[i] = 0; |
| | | int pixels = layer.kernels[i].h*layer.kernels[i].w*layer.kernels[i].c; |
| | | for(j = 0; j < pixels; ++j){ |
| | | layer.kernel_momentum[i].data[j] = step*(layer.kernel_updates[i].data[j] - decay*layer.kernels[i].data[j]) |
| | | + momentum*layer.kernel_momentum[i].data[j]; |
| | | layer.kernels[i].data[j] += layer.kernel_momentum[i].data[j]; |
| | | } |
| | | zero_image(layer.kernel_updates[i]); |
| | | } |
| | | for(i = 0; i < input.h*input.w*input.c; ++i){ |
| | | input.data[i] = input.data[i]*convolution_gradient(input.data[i]); |
| | | } |
| | | |
| | | void visualize_convolutional_filters(convolutional_layer layer, char *window) |
| | | { |
| | | int color = 1; |
| | | int border = 1; |
| | | int h,w,c; |
| | | int size = layer.size; |
| | | h = size; |
| | | w = (size + border) * layer.n - border; |
| | | c = layer.kernels[0].c; |
| | | if(c != 3 || !color){ |
| | | h = (h+border)*c - border; |
| | | c = 1; |
| | | } |
| | | free_image(old_input); |
| | | |
| | | image filters = make_image(h,w,c); |
| | | int i,j; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | int w_offset = i*(size+border); |
| | | image k = layer.kernels[i]; |
| | | image copy = copy_image(k); |
| | | normalize_image(copy); |
| | | for(j = 0; j < k.c; ++j){ |
| | | set_pixel(copy,0,0,j,layer.biases[i]); |
| | | } |
| | | if(c == 3 && color){ |
| | | embed_image(copy, filters, 0, w_offset); |
| | | } |
| | | else{ |
| | | for(j = 0; j < k.c; ++j){ |
| | | int h_offset = j*(size+border); |
| | | image layer = get_image_layer(k, j); |
| | | embed_image(layer, filters, h_offset, w_offset); |
| | | free_image(layer); |
| | | } |
| | | } |
| | | free_image(copy); |
| | | } |
| | | image delta = get_convolutional_delta(layer); |
| | | image dc = collapse_image_layers(delta, 1); |
| | | char buff[256]; |
| | | sprintf(buff, "%s: Delta", window); |
| | | show_image(dc, buff); |
| | | free_image(dc); |
| | | show_image(filters, window); |
| | | free_image(filters); |
| | | } |
| | | |
| | | void visualize_convolutional_layer(convolutional_layer layer) |
| | | { |
| | | int i; |
| | | char buff[256]; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | image k = layer.kernels[i]; |
| | | sprintf(buff, "Kernel %d", i); |
| | | if(k.c <= 3) show_image(k, buff); |
| | | else show_image_layers(k, buff); |
| | | } |
| | | } |
| | | |