| | |
| | | net.n = n; |
| | | net.layers = calloc(net.n, sizeof(void *)); |
| | | net.types = calloc(net.n, sizeof(LAYER_TYPE)); |
| | | net.outputs = 0; |
| | | net.output = 0; |
| | | return net; |
| | | } |
| | | |
| | |
| | | } |
| | | } |
| | | |
| | | void update_network(network net, double step) |
| | | void update_network(network net, double step, double momentum, double decay) |
| | | { |
| | | int i; |
| | | for(i = 0; i < net.n; ++i){ |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | | update_convolutional_layer(layer, step, 0.9, .01); |
| | | update_convolutional_layer(layer, step, momentum, decay); |
| | | } |
| | | else if(net.types[i] == MAXPOOL){ |
| | | //maxpool_layer layer = *(maxpool_layer *)net.layers[i]; |
| | |
| | | } |
| | | else if(net.types[i] == CONNECTED){ |
| | | connected_layer layer = *(connected_layer *)net.layers[i]; |
| | | update_connected_layer(layer, step, .9, 0); |
| | | update_connected_layer(layer, step, momentum, decay); |
| | | } |
| | | } |
| | | } |
| | |
| | | return get_network_delta_layer(net, net.n-1); |
| | | } |
| | | |
| | | void learn_network(network net, double *input) |
| | | void calculate_error_network(network net, double *truth) |
| | | { |
| | | double *delta = get_network_delta(net); |
| | | double *out = get_network_output(net); |
| | | int i, k = get_network_output_size(net); |
| | | for(i = 0; i < k; ++i){ |
| | | delta[i] = truth[i] - out[i]; |
| | | } |
| | | } |
| | | |
| | | int get_predicted_class_network(network net) |
| | | { |
| | | double *out = get_network_output(net); |
| | | int k = get_network_output_size(net); |
| | | return max_index(out, k); |
| | | } |
| | | |
| | | void backward_network(network net, double *input, double *truth) |
| | | { |
| | | calculate_error_network(net, truth); |
| | | int i; |
| | | double *prev_input; |
| | | double *prev_delta; |
| | |
| | | } |
| | | } |
| | | |
| | | void train_network_batch(network net, batch b) |
| | | int train_network_datum(network net, double *x, double *y, double step, double momentum, double decay) |
| | | { |
| | | int i,j; |
| | | int k = get_network_output_size(net); |
| | | forward_network(net, x); |
| | | int class = get_predicted_class_network(net); |
| | | backward_network(net, x, y); |
| | | update_network(net, step, momentum, decay); |
| | | return (y[class]?1:0); |
| | | } |
| | | |
| | | double train_network_sgd(network net, data d, double step, double momentum,double decay) |
| | | { |
| | | int i; |
| | | int correct = 0; |
| | | for(i = 0; i < b.n; ++i){ |
| | | show_image(b.images[i], "Input"); |
| | | forward_network(net, b.images[i].data); |
| | | image o = get_network_image(net); |
| | | if(o.h) show_image_collapsed(o, "Output"); |
| | | double *output = get_network_output(net); |
| | | double *delta = get_network_delta(net); |
| | | int max_k = 0; |
| | | double max = 0; |
| | | for(j = 0; j < k; ++j){ |
| | | delta[j] = b.truth[i][j]-output[j]; |
| | | if(output[j] > max) { |
| | | max = output[j]; |
| | | max_k = j; |
| | | } |
| | | for(i = 0; i < d.X.rows; ++i){ |
| | | int index = rand()%d.X.rows; |
| | | correct += train_network_datum(net, d.X.vals[index], d.y.vals[index], step, momentum, decay); |
| | | if((i+1)%10 == 0){ |
| | | printf("%d: %f\n", (i+1), (double)correct/(i+1)); |
| | | } |
| | | if(b.truth[i][max_k]) ++correct; |
| | | printf("%f\n", (double)correct/(i+1)); |
| | | learn_network(net, b.images[i].data); |
| | | update_network(net, .001); |
| | | } |
| | | return (double)correct/d.X.rows; |
| | | } |
| | | |
| | | void train_network(network net, data d, double step, double momentum, double decay) |
| | | { |
| | | int i; |
| | | int correct = 0; |
| | | for(i = 0; i < d.X.rows; ++i){ |
| | | correct += train_network_datum(net, d.X.vals[i], d.y.vals[i], step, momentum, decay); |
| | | if(i%100 == 0){ |
| | | visualize_network(net); |
| | | cvWaitKey(100); |
| | | cvWaitKey(10); |
| | | } |
| | | } |
| | | visualize_network(net); |
| | | print_network(net); |
| | | cvWaitKey(100); |
| | | printf("Accuracy: %f\n", (double)correct/b.n); |
| | | printf("Accuracy: %f\n", (double)correct/d.X.rows); |
| | | } |
| | | |
| | | int get_network_output_size_layer(network net, int i) |
| | |
| | | { |
| | | int i,j; |
| | | for(i = 0; i < net.n; ++i){ |
| | | double *output; |
| | | double *output = 0; |
| | | int n = 0; |
| | | if(net.types[i] == CONVOLUTIONAL){ |
| | | convolutional_layer layer = *(convolutional_layer *)net.layers[i]; |
| | |
| | | fprintf(stderr, "\n"); |
| | | } |
| | | } |
| | | double network_accuracy(network net, data d) |
| | | { |
| | | int i; |
| | | int correct = 0; |
| | | int k = get_network_output_size(net); |
| | | for(i = 0; i < d.X.rows; ++i){ |
| | | forward_network(net, d.X.vals[i]); |
| | | double *out = get_network_output(net); |
| | | int guess = max_index(out, k); |
| | | if(d.y.vals[i][guess]) ++correct; |
| | | } |
| | | return (double)correct/d.X.rows; |
| | | } |
| | | |