| | |
| | | avgerr = .99 * avgerr + .01 * err; |
| | | if(count % 1000000 == 0) printf("%f %f :%f AVG %f \n", truth, out[0], err, avgerr); |
| | | delta[0] = truth - out[0]; |
| | | learn_network(net, input); |
| | | update_network(net, .001); |
| | | backward_network(net, input, &truth); |
| | | update_network(net, .001,0,0); |
| | | } |
| | | } |
| | | |
| | | void test_data() |
| | | { |
| | | char *labels[] = {"cat","dog"}; |
| | | batch train = random_batch("train_paths.txt", 101,labels, 2); |
| | | show_image(train.images[0], "Test Data Loading"); |
| | | show_image(train.images[100], "Test Data Loading"); |
| | | show_image(train.images[10], "Test Data Loading"); |
| | | free_batch(train); |
| | | data train = load_data_image_pathfile_random("train_paths.txt", 101,labels, 2); |
| | | free_data(train); |
| | | } |
| | | |
| | | void test_full() |
| | |
| | | int i = 0; |
| | | char *labels[] = {"cat","dog"}; |
| | | while(i++ < 1000 || 1){ |
| | | batch train = random_batch("train_paths.txt", 1000, labels, 2); |
| | | train_network_batch(net, train); |
| | | free_batch(train); |
| | | data train = load_data_image_pathfile_random("train_paths.txt", 1000, labels, 2); |
| | | train_network(net, train, .0005, 0, 0); |
| | | free_data(train); |
| | | printf("Round %d\n", i); |
| | | } |
| | | } |
| | | |
| | | double error_network(network net, matrix m, double **truth) |
| | | { |
| | | int i; |
| | | int correct = 0; |
| | | int k = get_network_output_size(net); |
| | | for(i = 0; i < m.rows; ++i){ |
| | | forward_network(net, m.vals[i]); |
| | | double *out = get_network_output(net); |
| | | int guess = max_index(out, k); |
| | | if(truth[i][guess]) ++correct; |
| | | } |
| | | return (double)correct/m.rows; |
| | | } |
| | | |
| | | double **one_hot(double *a, int n, int k) |
| | | { |
| | | int i; |
| | | double **t = calloc(n, sizeof(double*)); |
| | | for(i = 0; i < n; ++i){ |
| | | t[i] = calloc(k, sizeof(double)); |
| | | int index = (int)a[i]; |
| | | t[i][index] = 1; |
| | | } |
| | | return t; |
| | | } |
| | | |
| | | void test_nist() |
| | | { |
| | | srand(999999); |
| | | srand(444444); |
| | | network net = parse_network_cfg("nist.cfg"); |
| | | matrix m = csv_to_matrix("mnist/mnist_train.csv"); |
| | | matrix test = csv_to_matrix("mnist/mnist_test.csv"); |
| | | double *truth_1d = pop_column(&m, 0); |
| | | double **truth = one_hot(truth_1d, m.rows, 10); |
| | | double *test_truth_1d = pop_column(&test, 0); |
| | | double **test_truth = one_hot(test_truth_1d, test.rows, 10); |
| | | int i,j; |
| | | clock_t start = clock(), end; |
| | | for(i = 0; i < test.rows; ++i){ |
| | | normalize_array(test.vals[i], 28*28); |
| | | //scale_array(m.vals[i], 28*28, 1./255.); |
| | | //translate_array(m.vals[i], 28*28, -.1); |
| | | } |
| | | for(i = 0; i < m.rows; ++i){ |
| | | normalize_array(m.vals[i], 28*28); |
| | | //scale_array(m.vals[i], 28*28, 1./255.); |
| | | //translate_array(m.vals[i], 28*28, -.1); |
| | | } |
| | | data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
| | | data test = load_categorical_data_csv("mnist/mnist_test.csv",0,10); |
| | | normalize_data_rows(train); |
| | | normalize_data_rows(test); |
| | | randomize_data(train); |
| | | int count = 0; |
| | | double lr = .0005; |
| | | while(++count <= 300){ |
| | | //lr *= .99; |
| | | int index = 0; |
| | | int correct = 0; |
| | | int number = 1000; |
| | | for(i = 0; i < number; ++i){ |
| | | index = rand()%m.rows; |
| | | forward_network(net, m.vals[index]); |
| | | double *out = get_network_output(net); |
| | | double *delta = get_network_delta(net); |
| | | int max_i = 0; |
| | | double max = out[0]; |
| | | for(j = 0; j < 10; ++j){ |
| | | delta[j] = truth[index][j]-out[j]; |
| | | if(out[j] > max){ |
| | | max = out[j]; |
| | | max_i = j; |
| | | while(++count <= 1){ |
| | | double acc = train_network_sgd(net, train, lr, .9, .001); |
| | | printf("Training Accuracy: %lf", acc); |
| | | lr /= 2; |
| | | } |
| | | } |
| | | if(truth[index][max_i]) ++correct; |
| | | learn_network(net, m.vals[index]); |
| | | update_network(net, lr); |
| | | } |
| | | print_network(net); |
| | | image input = double_to_image(28,28,1, m.vals[index]); |
| | | //show_image(input, "Input"); |
| | | image o = get_network_image(net); |
| | | //show_image_collapsed(o, "Output"); |
| | | visualize_network(net); |
| | | cvWaitKey(10); |
| | | //double test_acc = error_network(net, m, truth); |
| | | fprintf(stderr, "\n%5d: %f %f\n\n",count, (double)correct/number, lr); |
| | | if(count % 10 == 0 && 0){ |
| | | double train_acc = error_network(net, m, truth); |
| | | /* |
| | | double train_acc = network_accuracy(net, train); |
| | | fprintf(stderr, "\nTRAIN: %f\n", train_acc); |
| | | double test_acc = error_network(net, test, test_truth); |
| | | double test_acc = network_accuracy(net, test); |
| | | fprintf(stderr, "TEST: %f\n\n", test_acc); |
| | | printf("%d, %f, %f\n", count, train_acc, test_acc); |
| | | } |
| | | if(count % (m.rows/number) == 0) lr /= 2; |
| | | } |
| | | double train_acc = error_network(net, m, truth); |
| | | fprintf(stderr, "\nTRAIN: %f\n", train_acc); |
| | | double test_acc = error_network(net, test, test_truth); |
| | | fprintf(stderr, "TEST: %f\n\n", test_acc); |
| | | printf("%d, %f, %f\n", count, train_acc, test_acc); |
| | | end = clock(); |
| | | */ |
| | | //end = clock(); |
| | | //printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | |
| | |
| | | { |
| | | network net = parse_network_cfg("connected.cfg"); |
| | | matrix m = csv_to_matrix("train.csv"); |
| | | matrix ho = hold_out_matrix(&m, 2500); |
| | | //matrix ho = hold_out_matrix(&m, 2500); |
| | | double *truth = pop_column(&m, 0); |
| | | double *ho_truth = pop_column(&ho, 0); |
| | | //double *ho_truth = pop_column(&ho, 0); |
| | | int i; |
| | | clock_t start = clock(), end; |
| | | int count = 0; |
| | |
| | | delta[0] = truth[index] - out[0]; |
| | | // printf("%f\n", delta[0]); |
| | | //printf("%f %f\n", truth[index], out[0]); |
| | | learn_network(net, m.vals[index]); |
| | | update_network(net, .00001); |
| | | //backward_network(net, m.vals[index], ); |
| | | update_network(net, .00001, 0,0); |
| | | } |
| | | //double test_acc = error_network(net, m, truth); |
| | | //double valid_acc = error_network(net, ho, ho_truth); |
| | |
| | | printf("Neural Net Learning: %lf seconds\n", (double)(end-start)/CLOCKS_PER_SEC); |
| | | } |
| | | |
| | | void test_random_preprocess() |
| | | void test_split() |
| | | { |
| | | FILE *file = fopen("train.csv", "w"); |
| | | char *labels[] = {"cat","dog"}; |
| | | int i,j,k; |
| | | srand(0); |
| | | network net = parse_network_cfg("convolutional.cfg"); |
| | | for(i = 0; i < 100; ++i){ |
| | | printf("%d\n", i); |
| | | batch part = get_batch("train_paths.txt", i, 100, labels, 2); |
| | | for(j = 0; j < part.n; ++j){ |
| | | forward_network(net, part.images[j].data); |
| | | double *out = get_network_output(net); |
| | | fprintf(file, "%f", part.truth[j][0]); |
| | | for(k = 0; k < get_network_output_size(net); ++k){ |
| | | fprintf(file, ",%f", out[k]); |
| | | data train = load_categorical_data_csv("mnist/mnist_train.csv", 0, 10); |
| | | data *split = cv_split_data(train, 0, 13); |
| | | printf("%d, %d, %d\n", train.X.rows, split[0].X.rows, split[1].X.rows); |
| | | } |
| | | fprintf(file, "\n"); |
| | | } |
| | | free_batch(part); |
| | | } |
| | | } |
| | | |
| | | |
| | | int main() |
| | | { |
| | | //test_kernel_update(); |
| | | test_nist(); |
| | | test_split(); |
| | | // test_nist(); |
| | | //test_full(); |
| | | //test_random_preprocess(); |
| | | //test_random_classify(); |