AlexeyAB
2018-04-11 4d9a2bdac688f9c949b304dde8188a40efce1b49
src/yolo_v2_class.cpp
@@ -32,8 +32,6 @@
#endif
struct detector_gpu_t {
   float **probs;
   box *boxes;
   network net;
   image images[FRAMES];
   float *avg;
@@ -71,6 +69,7 @@
   }
   set_batch_network(&net, 1);
   net.gpu_index = cur_gpu_id;
   fuse_conv_batchnorm(net);
   layer l = net.layers[net.n - 1];
   int j;
@@ -79,10 +78,6 @@
   for (j = 0; j < FRAMES; ++j) detector_gpu.predictions[j] = (float *)calloc(l.outputs, sizeof(float));
   for (j = 0; j < FRAMES; ++j) detector_gpu.images[j] = make_image(1, 1, 3);
   detector_gpu.boxes = (box *)calloc(l.w*l.h*l.n, sizeof(box));
   detector_gpu.probs = (float **)calloc(l.w*l.h*l.n, sizeof(float *));
   for (j = 0; j < l.w*l.h*l.n; ++j) detector_gpu.probs[j] = (float *)calloc(l.classes, sizeof(float));
   detector_gpu.track_id = (unsigned int *)calloc(l.classes, sizeof(unsigned int));
   for (j = 0; j < l.classes; ++j) detector_gpu.track_id[j] = 1;
@@ -103,14 +98,9 @@
   for (int j = 0; j < FRAMES; ++j) free(detector_gpu.predictions[j]);
   for (int j = 0; j < FRAMES; ++j) if(detector_gpu.images[j].data) free(detector_gpu.images[j].data);
   for (int j = 0; j < l.w*l.h*l.n; ++j) free(detector_gpu.probs[j]);
   free(detector_gpu.boxes);
   free(detector_gpu.probs);
   int old_gpu_index;
#ifdef GPU
   cudaGetDevice(&old_gpu_index);
   //cudaSetDevice(detector_gpu.net.gpu_index);
   cuda_set_device(detector_gpu.net.gpu_index);
#endif
@@ -225,17 +215,21 @@
      l.output = detector_gpu.avg;
      detector_gpu.demo_index = (detector_gpu.demo_index + 1) % FRAMES;
   }
   //get_region_boxes(l, 1, 1, thresh, detector_gpu.probs, detector_gpu.boxes, 0, 0);
   //if (nms) do_nms_sort(detector_gpu.boxes, detector_gpu.probs, l.w*l.h*l.n, l.classes, nms);
   get_region_boxes(l, 1, 1, thresh, detector_gpu.probs, detector_gpu.boxes, 0, 0);
   if (nms) do_nms_sort(detector_gpu.boxes, detector_gpu.probs, l.w*l.h*l.n, l.classes, nms);
   //draw_detections(im, l.w*l.h*l.n, thresh, boxes, probs, names, alphabet, l.classes);
   int nboxes = 0;
   int letterbox = 0;
   float hier_thresh = 0.5;
   detection *dets = get_network_boxes(&net, im.w, im.h, thresh, hier_thresh, 0, 1, &nboxes, letterbox);
   if (nms) do_nms_sort_v3(dets, nboxes, l.classes, nms);
   std::vector<bbox_t> bbox_vec;
   for (size_t i = 0; i < (l.w*l.h*l.n); ++i) {
      box b = detector_gpu.boxes[i];
      int const obj_id = max_index(detector_gpu.probs[i], l.classes);
      float const prob = detector_gpu.probs[i][obj_id];
   for (size_t i = 0; i < nboxes; ++i) {
      box b = dets[i].bbox;
      int const obj_id = max_index(dets[i].prob, l.classes);
      float const prob = dets[i].prob[obj_id];
      
      if (prob > thresh) 
      {
@@ -252,6 +246,7 @@
      }
   }
   free_detections(dets, nboxes);
   if(sized.data)
      free(sized.data);