| | |
| | | h = convolutional_out_height(layer); |
| | | w = convolutional_out_width(layer); |
| | | c = layer.n; |
| | | return float_to_image(h,w,c,layer.output); |
| | | return float_to_image(w,h,c,layer.output); |
| | | } |
| | | |
| | | image get_convolutional_delta(convolutional_layer layer) |
| | |
| | | h = convolutional_out_height(layer); |
| | | w = convolutional_out_width(layer); |
| | | c = layer.n; |
| | | return float_to_image(h,w,c,layer.delta); |
| | | return float_to_image(w,h,c,layer.delta); |
| | | } |
| | | |
| | | convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation) |
| | |
| | | |
| | | void backward_bias(float *bias_updates, float *delta, int batch, int n, int size) |
| | | { |
| | | float alpha = 1./batch; |
| | | int i,b; |
| | | for(b = 0; b < batch; ++b){ |
| | | for(i = 0; i < n; ++i){ |
| | | bias_updates[i] += alpha * sum_array(delta+size*(i+b*n), size); |
| | | bias_updates[i] += sum_array(delta+size*(i+b*n), size); |
| | | } |
| | | } |
| | | } |
| | |
| | | |
| | | void backward_convolutional_layer(convolutional_layer layer, network_state state) |
| | | { |
| | | float alpha = 1./layer.batch; |
| | | int i; |
| | | int m = layer.n; |
| | | int n = layer.size*layer.size*layer.c; |
| | |
| | | |
| | | im2col_cpu(im, layer.c, layer.h, layer.w, |
| | | layer.size, layer.stride, layer.pad, b); |
| | | gemm(0,1,m,n,k,alpha,a,k,b,k,1,c,n); |
| | | gemm(0,1,m,n,k,1,a,k,b,k,1,c,n); |
| | | |
| | | if(state.delta){ |
| | | a = layer.filters; |
| | |
| | | } |
| | | } |
| | | |
| | | void update_convolutional_layer(convolutional_layer layer, float learning_rate, float momentum, float decay) |
| | | void update_convolutional_layer(convolutional_layer layer, int batch, float learning_rate, float momentum, float decay) |
| | | { |
| | | int size = layer.size*layer.size*layer.c*layer.n; |
| | | axpy_cpu(layer.n, learning_rate, layer.bias_updates, 1, layer.biases, 1); |
| | | axpy_cpu(layer.n, learning_rate/batch, layer.bias_updates, 1, layer.biases, 1); |
| | | scal_cpu(layer.n, momentum, layer.bias_updates, 1); |
| | | |
| | | axpy_cpu(size, -decay, layer.filters, 1, layer.filter_updates, 1); |
| | | axpy_cpu(size, learning_rate, layer.filter_updates, 1, layer.filters, 1); |
| | | axpy_cpu(size, -decay*batch, layer.filters, 1, layer.filter_updates, 1); |
| | | axpy_cpu(size, learning_rate/batch, layer.filter_updates, 1, layer.filters, 1); |
| | | scal_cpu(size, momentum, layer.filter_updates, 1); |
| | | } |
| | | |
| | |
| | | int h = layer.size; |
| | | int w = layer.size; |
| | | int c = layer.c; |
| | | return float_to_image(h,w,c,layer.filters+i*h*w*c); |
| | | return float_to_image(w,h,c,layer.filters+i*h*w*c); |
| | | } |
| | | |
| | | image *weighted_sum_filters(convolutional_layer layer, image *prev_filters) |
| | | image *get_filters(convolutional_layer layer) |
| | | { |
| | | image *filters = calloc(layer.n, sizeof(image)); |
| | | int i,j,k,c; |
| | | if(!prev_filters){ |
| | | for(i = 0; i < layer.n; ++i){ |
| | | filters[i] = copy_image(get_convolutional_filter(layer, i)); |
| | | } |
| | | } |
| | | else{ |
| | | image base = prev_filters[0]; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | image filter = get_convolutional_filter(layer, i); |
| | | filters[i] = make_image(base.h, base.w, base.c); |
| | | for(j = 0; j < layer.size; ++j){ |
| | | for(k = 0; k < layer.size; ++k){ |
| | | for(c = 0; c < layer.c; ++c){ |
| | | float weight = get_pixel(filter, j, k, c); |
| | | image prev_filter = copy_image(prev_filters[c]); |
| | | scale_image(prev_filter, weight); |
| | | add_into_image(prev_filter, filters[i], 0,0); |
| | | free_image(prev_filter); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | int i; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | filters[i] = copy_image(get_convolutional_filter(layer, i)); |
| | | } |
| | | return filters; |
| | | } |
| | | |
| | | image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters) |
| | | { |
| | | image *single_filters = weighted_sum_filters(layer, 0); |
| | | image *single_filters = get_filters(layer); |
| | | show_images(single_filters, layer.n, window); |
| | | |
| | | image delta = get_convolutional_image(layer); |