| | |
| | | h = convolutional_out_height(layer); |
| | | w = convolutional_out_width(layer); |
| | | c = layer.n; |
| | | return float_to_image(h,w,c,layer.output); |
| | | return float_to_image(w,h,c,layer.output); |
| | | } |
| | | |
| | | image get_convolutional_delta(convolutional_layer layer) |
| | |
| | | h = convolutional_out_height(layer); |
| | | w = convolutional_out_width(layer); |
| | | c = layer.n; |
| | | return float_to_image(h,w,c,layer.delta); |
| | | return float_to_image(w,h,c,layer.delta); |
| | | } |
| | | |
| | | convolutional_layer *make_convolutional_layer(int batch, int h, int w, int c, int n, int size, int stride, int pad, ACTIVATION activation) |
| | |
| | | int h = layer.size; |
| | | int w = layer.size; |
| | | int c = layer.c; |
| | | return float_to_image(h,w,c,layer.filters+i*h*w*c); |
| | | return float_to_image(w,h,c,layer.filters+i*h*w*c); |
| | | } |
| | | |
| | | image *weighted_sum_filters(convolutional_layer layer, image *prev_filters) |
| | | image *get_filters(convolutional_layer layer) |
| | | { |
| | | image *filters = calloc(layer.n, sizeof(image)); |
| | | int i,j,k,c; |
| | | if(!prev_filters){ |
| | | for(i = 0; i < layer.n; ++i){ |
| | | filters[i] = copy_image(get_convolutional_filter(layer, i)); |
| | | } |
| | | } |
| | | else{ |
| | | image base = prev_filters[0]; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | image filter = get_convolutional_filter(layer, i); |
| | | filters[i] = make_image(base.h, base.w, base.c); |
| | | for(j = 0; j < layer.size; ++j){ |
| | | for(k = 0; k < layer.size; ++k){ |
| | | for(c = 0; c < layer.c; ++c){ |
| | | float weight = get_pixel(filter, j, k, c); |
| | | image prev_filter = copy_image(prev_filters[c]); |
| | | scale_image(prev_filter, weight); |
| | | add_into_image(prev_filter, filters[i], 0,0); |
| | | free_image(prev_filter); |
| | | } |
| | | } |
| | | } |
| | | } |
| | | int i; |
| | | for(i = 0; i < layer.n; ++i){ |
| | | filters[i] = copy_image(get_convolutional_filter(layer, i)); |
| | | } |
| | | return filters; |
| | | } |
| | | |
| | | image *visualize_convolutional_layer(convolutional_layer layer, char *window, image *prev_filters) |
| | | { |
| | | image *single_filters = weighted_sum_filters(layer, 0); |
| | | image *single_filters = get_filters(layer); |
| | | show_images(single_filters, layer.n, window); |
| | | |
| | | image delta = get_convolutional_image(layer); |